Supplementary Information for:

Cyclopentadienyl-based Mg complexes in the Intramolecular Hydroamination of aminoalkenes: Mechanistic evidences for a cationic versus neutral magnesium derivatives.

Carlos Gallegos, aRuth Camacho, Mercedes Valiente, Tomás Cuenca, Jesús Canoa

^aDpto de Química de Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares. Spain.

^bDpto de Química Física, Universidad de Alcalá, 28871 Alcalá de Henares. Spain.

Table S1. HSQC 1 H- 13 C spectrum of 2.				
$\delta^{1}H$	δ ¹³ C			
5.94	105.4			
6.17	110.2			
6.75	116.9			

Figure S1. HSQC ¹H-¹³C spectrum of 2.

Assignement	δ ¹ H	δ ¹³ C
$(CH_3)_2Si$	0.63, 0.58	117.5
		105.9
C ₅ H ₃ CH ₂ CH ₂ N(CHMe ₂) ₂	2.42-2.36	110.2
		119.2
$C_5H_3CH_2CH_2N(CHMe_2)_2$	1.95	119.2

Figure S2. HMBC 1 H- 13 C spectrum of 2.

Diffusion Ordered Spectroscopy (¹H-DOSY) experiments.

According to literature procedures² the internal reference method was employed. Three different patrons were chosen. Tetramethylsilane (SiMe₄, Mw = 88.22), 1,2,3,4-tetraphenylnaphtalene (TPhN, Mw = 432.53) and dendrimer G2O3A12 (DEN, Mw = 1424.23, figure S4). These three patrons and **2** were placed in an NMR tube and 0.5 mL of C₆D₆ was added. After the DOSY experiment was recorded Log D *vs* Log Mw of patrons was plotted. The molecular weight can be then obtained by interpolating the D value of the desired complex.

Figure S3. Log D vs Log Mw of 2.

Compound	10 ⁻¹⁰ D (m ² s ⁻¹)	Log D	M _w (g mol ⁻¹)	Log M _w	
SiMe ₄	20.6	-8.6868	88.22	1.9455	
TPhN	6.36	-9.1965	432.53	2.6360	
DEN	2.57	-9.5897	1424.23	3.1536	
2	5.84	-9.2334	478.25	2.6797	

Table S3: D.	Log D. Mw	and Log Mw	values of three	patrons and 2.
	,,,			

Figure S4. Structure of carbosilane dendrimer G2O3A12.¹

Dendrimer G2O3A12 was synthesized according literature procedure.¹

Figure S5. DOSY ¹H of 2 in C_6D_6/THF .

Figure S6. Plot of ln v *versus* ln S for the hydroamination of A catalyzed by **2** at 25 °C with $[C]_0 = 20$ mM.

Figure S7. Stoichiometric reaction between A and 2 in a ratio 1:1 was carried out at 70 °C.

Figure S8. DOSY ¹H of **4** in C_6D_6/C_6H_5N .

Figure S9. Plot of ln S *versus* t for the hydroamination of A catalyzed by 4 with $[S]_0 = 1$ M.

Figure S10. Stoichiometric reaction between A and 4 in a ratio 1:1. No reaction was observed.

Figure S11. Stoichiometric reaction between A and 4 in a ratio 1:2 at rt.

- Sánchez-Nieves, J., Ortega, P., Muñoz-Fernández, M. A., Gómez R., de la Mata, F. J. *Tetrahedron*, 2010, 66, 9203.
- 2. Li, D., Keresztes, I., Hopson, R. Williard, P. G. Acc. Chem. Res. 2009, 42, 270.