Supplementary Information for:
Cyclopentadienyl-based Mg complexes in the Intramolecular Hydroamination of aminoalkenes: Mechanistic evidences for a cationic versus neutral magnesium derivatives.

Carlos Gallegos, ${ }^{\text {a }}$ Ruth Camacho, ${ }^{\text {a }}$ Mercedes Valiente, ${ }^{\text {b }}$ Tomás Cuenca, ${ }^{\text {a Jesús Cano }}{ }^{\mathbf{a}}$
${ }^{a}$ Dpto de Quimica de Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares. Spain.
${ }^{b}$ Dpto de Química Física, Universidad de Alcalá, 28871 Alcalá de Henares. Spain.

Table S1. HSQC ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ spectrum of 2.

$\boldsymbol{\delta}^{\mathbf{1}} \mathbf{H}$	$\boldsymbol{\delta}^{\mathbf{1 3}} \mathbf{C}$
5.94	105.4
6.17	110.2
6.75	116.9

Figure S1. HSQC ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ spectrum of $\mathbf{2}$.
Table S2. $\mathrm{HMBC}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ spectrum of 2 .

Assignement	$\boldsymbol{\delta}^{\mathbf{1} \mathbf{H}}$	$\boldsymbol{\delta}^{\mathbf{1 3}} \mathbf{C}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}$	$0.63,0.58$	117.5
		105.9
$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CHMe}_{2}\right)_{2}$	$2.42-2.36$	110.2
		119.2
$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CHMe}_{2}\right)_{2}$	1.95	119.2

Figure S2. $\mathrm{HMBC}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ spectrum of 2.

Diffusion Ordered Spectroscopy ($\left.{ }^{1} \mathrm{H}-\mathrm{DOSY}\right)$ experiments.

According to literature procedures ${ }^{2}$ the internal reference method was employed. Three different patrons were chosen. Tetramethylsilane $\left(\mathrm{SiMe}_{4}, \mathrm{Mw}=88.22\right)$, 1,2,3,4-tetraphenylnaphtalene $(\mathrm{TPhN}, \mathrm{Mw}=432.53)$ and dendrimer G2O3A12 (DEN, $\mathrm{Mw}=1424.23$, figure S 4). These three patrons and 2 were placed in an NMR tube and 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ was added. After the DOSY experiment was recorded Log $\mathrm{D} v s \log \mathrm{Mw}$ of patrons was plotted. The molecular weight can be then obtained by interpolating the D value of the desired complex.

Figure S3. Log D vs Log Mw of $\mathbf{2}$.

Table S3: D, Log D, Mw and Log Mw values of three patrons and 2.

Compound	$\mathbf{1 0}^{-\mathbf{1 0}} \mathbf{D}\left(\mathbf{m}^{\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}\right)$	$\mathbf{L o g} \mathbf{D}$	$\mathbf{M}_{\mathbf{w}}\left(\mathbf{g ~ m o l}^{-\mathbf{1}}\right)$	$\mathbf{L o g ~ M}$
\mathbf{w}				
$\mathbf{S i M e}$				
$\mathbf{T P h N}$	20.6	-8.6868	88.22	1.9455
$\mathbf{D E N}$	6.36	-9.1965	432.53	2.6360
$\mathbf{2}$	2.57	-9.5897	1424.23	3.1536
	5.84	-9.2334	478.25	2.6797

Figure S4. Structure of carbosilane dendrimer G2O3A12. ${ }^{1}$
Dendrimer G2O3A12 was synthesized according literature procedure. ${ }^{1}$

Figure S5. DOSY ${ }^{1} \mathrm{H}$ of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{THF}$.

Figure S6. Plot of $\ln \mathrm{v}$ versus $\ln \mathrm{S}$ for the hydroamination of \mathbf{A} catalyzed by 2 at $25^{\circ} \mathrm{C}$ with $[\mathrm{C}]_{0}=20$ mM .

Figure S7. Stoichiometric reaction between \mathbf{A} and $\mathbf{2}$ in a ratio $1: 1$ was carried out at $70^{\circ} \mathrm{C}$.

Figure S8. DOSY ${ }^{1} \mathrm{H}$ of 4 in $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$.

Figure S9. Plot of $\ln S$ versus t for the hydroamination of A catalyzed by $\mathbf{4}$ with $[S]_{0}=1 \mathrm{M}$.

Figure S10. Stoichiometric reaction between A and $\mathbf{4}$ in a ratio 1:1. No reaction was observed.

Figure S11. Stoichiometric reaction between \mathbf{A} and $\mathbf{4}$ in a ratio 1:2 at rt .

1. Sánchez-Nieves, J., Ortega, P., Muñoz-Fernández, M. A., Gómez R., de la Mata, F. J. Tetrahedron, 2010, 66, 9203.
2. Li, D., Keresztes, I., Hopson, R. Williard, P. G. Acc. Chem. Res. 2009, 42, 270.
