Supporting Information

Preparation and Characterization of PtIr Alloy Dendritic Nanostructures for Superior Electrochemical Activity and Stability in Oxygen Reduction and Ethanol Oxidation Reactions

\dagger Department of Chemical Engineering, Soongsil University, Seoul 156-743, Republic of Korea.
\ddagger Department of Engineering Science, University of Oxford, Oxford OXı 3PJ, United Kingdom.
\S These authors contributed equally to this work.

[^0]

Figure S1. (a) Fast Fourier-transform (FFT) pattern corresponding to the HR-TEM image of Figure 1(b). The dendritic Pt-Ir alloy nanostructures consist of polycrystalline structures. (b) Particle size distribution of the dendritic Pt-Ir alloy nanostructures.

Figure S2. Field-emission transmission electron microscopy (FE-TEM) images of the Pt-Ir nanostructures prepared in the absence of a CTAC.

Figure S3. Schematic illustration of the synthesis of the porous Pt-Ir alloy nanostructures in the presence of a CTAC.

Figure S4. (a and b) FE-TEM images of the d-PtIr NPs deposited on carbon black.

Figure S5. EDX spectrum of s-PtIr NPs.

Figure S6. Comparison of the elemental compositions of Pt and Ir in d-PtIr and s-PtIr nanostructures measured using XRD, EDX, XPS, and ICP-MS.

Figure S7. CO-stripping voltammograms of the d-PtIr/C, s-PtIr/C, and Pt/C electrocatalysts in $0.1 \mathrm{M} \mathrm{HClO}_{4}$.

Figure S8. Chronoamperometric curves of the d-PtIr/C, s-PtIr/C, and Pt/C electrocatalysts at 0.5 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$ for 7200 s in $0.1 \mathrm{M} \mathrm{HClO}_{4}+0.2 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

Figure S9. FE-TEM and HR-TEM images of (a and b) d-PtIr/C, (c and d) s-PtIr/C, and (e and f) Pt / C electrocatalysts after stability test in ORR, respectively.

[^0]: * Corresponding author. Tel: 82-2-820-0613. Fax: 82-2-812-5378.

 E-mail address: kwpark@ssu.ac.kr (Prof. K.-W. Park).

