Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supplementary Information for

Kinetic Analysis of Aqueous-phase Cyclodehydration of 1,4-Butanediol and Erythritol over a Layered Niobium Molybdate Solid Acid

Atsushi Takagaki*

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Mass transfer limitation

In the liquid-phase reaction, it is necessary to ascertain that no mass transfer limitations occur. For the highest reaction rates, mass transfer calculations were carried out. The Weisz-Prater criterion is useful to judge the absence of the internal diffusion limitations.

$$C_{WP} = \frac{-r'_{A(obs)}\rho_c R^2}{D_e C_{AS}} < 1$$
(11)

In this equation, -r'_{A(obs}) is the observed reaction rate [kmol/kg-cat·s], ρ_c is the solid catalyst density [kg/m³], R is the catalyst particle radius [m], and C_{AS} is the concentration of substrate A at the catalyst surface [kmol-A/m³]. Also, D_e is the effective diffusivity [m²/s], which is equal to (D_{AB} ϕ_p σ_c)/ τ where D_{AB} is the diffusivity [m²/s], ϕ_p is the catalyst porosity [-], σ_c is the constriction factor [-], and τ is the tortuosity [-]. For cyclodehydration of 1,4-butanediol, the highest reaction rates over HNbMoO₆, Amberlyst-15 and H-ZSM5, -r'_{A(obs}), were 6.9 × 10⁻⁶, 6.4 × 10⁻⁶ and 3.6 × 10⁻⁶ [kmol/kg-cat·s], respectively. Other quantities for the three catalysts are listed in Table S1. The concentration C_{AS} and diffusivity D_{AB} of 1,4-butanediol were 3.3 [kmol/m³] and 5 × 10⁻⁹ [m²/s].^{S1} The values of C_{wp} were calculated to be 2.6 × 10⁻³, 1.3 × 10⁻² and 3.6 × 10⁻³ for HNbMoO₆, Amberlyst-15 and H-ZSM5, respectively. The case of cyclodehydration of erythritol, the values of C_{wp} were obtained to be 3.9 × 10⁻⁴, 1.9 × 10⁻³ and 6.0 × 10⁻⁴ for HNbMoO₆, Amberlyst-15 and H-ZSM5, respectively. Since these values are <<1, internal mass transfer effects can be neglected.

Table S1	Quantities	used	for	estimation	of	the	Weisz-Prater	Criterion	in t	the
three catalysts										

Catalyst	Particle	Density,	Porosity,	Constriction	Tortuosity,	
	radius, R /m	ρ _c /kg m⁻³	ϕ_{p}	factor, σ_c	т	
HNbMoO ₆	5 × 10 ⁶	1.0 × 10 ³	0.4ª	1	1	
Amberlyst-15	5 × 10 ⁶	1.2 × 10 ³	0.32	0.8ª	3.0ª	
H-ZSM5	5 × 10 ⁶	0.7 × 10 ³	0.4ª	0.8ª	3.0ª	

^a Typical values of porosity, constriction factor and tortuosity are 0.4, 0.8 and 3.0, respectively.^{S2} These values were used.

[References]

[S1] T. Tominaga and S. Matsumoto, *Bull. Chem. Soc. Jpn.*, 1990, **63**, 533.

[S2] H.S. Fogler, "Elements of Chemical Reaction Engineering", Pearson Education Inc., 2010, p.816.