The enhancement of the catalytic performance of CrO_x/Al_2O_3 catalysts for ethylbenzene dehydrogenation through tailored coke deposition

Sara Gomez ^a, Liam McMillan ^a, James McGregor ^{a,b*}, J. Axel Zeitler ^a, Nabil Al-Yassir ^c, Sulaiman Al-Khattaf ^c, Lynn F. Gladden ^a

^a University of Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB2 3RA, UK

^b present address: University of Sheffield, Department of Chemical and Biological Engineering, Sheffield S1 3JD, UK ^c King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

*e-mail: james.mcgregor@sheffield.ac.uk

Supplementary Information

Table S1. Position of the Raman bands, D1/G and D1/D3 ratios of pre-coked CrO_x/Al_2O_3 with benzene, toluene, styrene and ethylene at 600 °C for 6 h time-on-stream.

Fig. S1. Cr 2p XP spectrum of a) fresh CrO_x/Al_2O_3 and b) CrO_x/Al_2O_3 pre-coked with benzene. Reference fitting values were utilized for Cr(III). The fresh catalyst shows the satellite peak ($2p_{3/2}$ sat.) at 591 eV.

		CrO _x /Al ₂ O ₃ pre-coked with:			
		benzene	toluene	styrene	ethylene
D4	position (cm ⁻¹)	1208	1211	1214	1202
	FWHM (cm ⁻¹)	51	112	122	93
D1	position (cm ⁻¹)	1303	1319	1322	1335
	FWHM (cm ⁻¹)	126	163	166	151
D3	position (cm ⁻¹)	1491	1500	1500	1501
	FWHM (cm ⁻¹)	229	244	238	292
G	position (cm ⁻¹)	1599	1593	1596	1592
	FWHM (cm ⁻¹)	57	68	69	51
Intensity ratios					
D1/G		2.7 ± 0.1	2.8 ± 0.1	3.1 ± 0.2	4.5 ± 0.2
D1/D3		4.0 ± 0.2	2.3 ± 0.1	2.2 ± 0.1	1.9 ± 0.1

Table S1. Position of the Raman bands, D1/G and D1/D3 ratios of pre-coked CrO_x/Al_2O_3 with benzene, toluene, styrene and ethylene at 600 °C for 6 h time-on-stream.

Fig. S1. Cr 2p XP spectrum of a) fresh CrO_x/Al_2O_3 and b) CrO_x/Al_2O_3 pre-coked with benzene. Reference fitting values were utilized for Cr(III). The fresh catalyst shows the satellite peak ($2p_{3/2}$ sat.) at 591 eV.