Supporting Information to Accompany

Uranium Mediated Ring Opening Polymerization of ϵ -Caprolactone: A Comparative Study

Isabell S. R. Karmel[†], Maxim Khononov[†], Matthias Tamm^{‡*}, Moris S. Eisen^{†*}

Schulich Faculty of Chemistry, Institute of Catalysis Science and Technology, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel.

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.

Table of Contents

1.	General Considerations
2.	GPC results for PCL obtained with complex 3 as catalyst4
4. 3 .	In situ ^1H NMR spectrum of the polymerization of $\epsilon\text{-caprolactone}$ mediated by complex $_5$
5.	GPC results for PCL obtained with complex 4 as catalyst6
6.	^1H NMR spectrum for the stoichiometric reaction of complex 4 and $\epsilon\text{-caprolactone}$
7. 4 .	In situ ¹ H NMR spectrum of the polymerization of ϵ -caprolactone mediated by complex 7
8.	GPC results for PCL obtained with catalyst 58
10.	In situ ¹ H NMR spectrum of the ROP of ε -caprolactone mediated by complex 5 9

1. General Considerations

All manipulations of air sensitive materials were performed with the rigorous exclusion of oxygen and moisture in flamed Schlenk-type glassware on a high vacuum line (10-5 torr), or in nitrogen filled Vacuum Atmospheres glovebox with a medium capacity recirculator (1-2 ppm oxygen). Argon and nitrogen were purified by passage through a MnO oxygen removal column and a Davison 4 Å molecular sieve column. Analytically pure solvents were dried and stored with Na/K alloy and degassed by three freeze-pump-thaw cycles prior to use (THF, hexane, toluene, benzene- d_6 , toluene- d_8). ε -Caprolactone (Sigma Aldrich) was distilled under reduced pressure from CaH₂ and stored in the glovebox prior to use. NMR spectra were recorded on DPX 200, Avance 300 and Avance 500 Bruker spectrometers. Chemical shifts for ¹H NMR and ¹³C NMR are reported in ppm and referenced using residual proton or carbon signals of the deuterated solvent relative to tetramethylsilane. GPC measurements were carried out on a Waters Breeze system with a styrogel RT column and with THF (HPLC grade, T.G. Baker) as mobile phase at 30 °C. Relative calibration was done with polystyrene standards (Aldrich, 2000 -1800000 range). $M_{\rm n}$ values were multiplied by a factor of 0.56 and correlated to actual PCL values.¹

2. GPC results for PCL obtained with complex 3 as catalyst

This graph corresponds to the polymer obtained after a polymerization time of 60 minutes at room temperature using complex **3** as initiator and a catalyst to monomer ratio of $1 / 60\ 000$ (entry 3 in Table 1).

This graph corresponds to the polymer obtained after a polymerization time of 300 minutes at room temperature using complex **3** as initiator and a catalyst to monomer ratio of $1 / 60\ 000$ (entry 5 in Table 1).

3. ¹H NMR spectrum for stoichiometric reaction of complex **3** and ε-caprolactone

¹H NMR (C_6D_6 , 300 MHz, 25 °C) δ (ppm) -1.88 (d, 24 H, ³J = 5.25 Hz, N-C=C-CH(*CH*₃)₂) 0.93–0.95 (m, 6 H, HN(CH₂*CH*₃)(CH₃), 1.20-1.36 (m, 29 H, HN(*CH*₂CH₃)(*CH*₃) + *CH*₂ ϵ -CL + N-C=C-*CH*(CH₃)₂), 1.63 (m, 2 H, *CH*₂, ϵ -CL), 2.09-2.11 (m, 3 H, *CH*₂, ϵ -CL), 3.21 (brs, 2 H, *H*N(CH₂CH₃)(CH₃)), 3.53-3.55 (m, 28 H, -C=C-CH(*CH*₃)₂ + *CH*₂, ϵ -CL), 5.92 (s, 2 H, *CH*, ϵ -CL), 6.75-6.80 (m, 2 H, *H*_{ar}), 7.14 – 7.17 (m, 6 H, *H*_{ar}), 14.71 (brs, 4 H, *CH*=*CH*), 16.15 (s, 4 H, H_{ar}).

4. In situ ¹H NMR spectrum of the polymerization of ε -caprolactone mediated by complex **3**.

¹H NMR (C₇D₈, 300 MHz, 25 °C) δ (ppm) 1.15 – 1.56 (m, CH₂, ϵ -CL), 1.59 – 1.61 (m, CH₂, PCL), 2.13 – 2.30 (m, CH₂, ϵ -CL and PCL), 3.57 -3.60 (m, CH₂, ϵ -CL), 3.99 -4.01 (m, CH₂, PCL), 5.98 (br, CH of caprolactonyl).

5. GPC results for PCL obtained with complex 4 as catalyst

This graph corresponds to the polymer obtained after a polymerization time of 120 minutes at 90°C using complex **4** as initiator and a catalyst to monomer ratio of 1 / 1000 (entry 3 in Table 2).

6. ¹H NMR spectrum for the stoichiometric reaction of complex **4** and ϵ -caprolactone

¹H NMR (C_6D_6 , 300 MHz, 25 °C) δ (ppm) -0.93 - -0.86 (m, 36 H, CH_2 , ϵ -CL), 1.01-1.08 (m, 30 H, CH_2 , ϵ -CL), 1.28-1.38 (m, 44 H, CH_2 , ϵ -CL), 1.73 (s, 3 H, N(CH_3)₂), 1.74 (s, 3 H, N(CH_3)₂), 1.95-1.98 (m, 21 H, CH_2 , ϵ -CL), 5.04 (s, 30 H, $C_5(CH_3)_5$). 7. In situ ¹H NMR spectrum of the polymerization of ϵ -caprolactone mediated by complex **4**.

¹H NMR (C₇D₈, 300 MHz, 25 °C) δ (ppm) 0.97 – 1.09 (m, CH₂, ϵ -CL), 1.26 – 1.36(m, CH₂, PCL), 1.94 – 2.03 (m, CH₂, ϵ -CL and PCL), 3.41 – 3.44 (m, CH₂, ϵ -CL), 3.79 – 3.83 (m, CH₂, PCL), 5.79 (br, CH, caprolactonyl).

8. GPC results for PCL obtained with catalyst 5

	Broad Offkhown Relative Feak Table										
	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	Mz+1/Mw		
1		76373	194117	170659	350698	516780	2.541711	1.806631	2.662208		

This graph corresponds to the polymer obtained after a polymerization time of 840 minutes at 90°C using complex **5** as initiator and a catalyst to monomer ratio of 1 / 1000 (entry 5 in Table 3).

9. ¹H NMR spectrum for the stoichiometric reaction of complex **5** and ϵ -caprolactone

¹H NMR (C₆D₆, 300 MHz, 25 °C) δ (ppm) -1.89 (s, 30 H, C₅(CH₃)₅), 2.71-2.88 (m, 33 H, CH₂, ϵ -CL), 3.76-3.81 (m, CH₂, ϵ -CL), 5.13-5.18 (m, CH₂, ϵ -CL), 7.08 (brs, 6 H, H_{ar}), 15.85 (brs, 3 H, CH₃).

10. In situ ¹H NMR spectrum of the ROP of ε -caprolactone mediated by complex **5**.

¹H NMR (C₇D₈, 300 MHz, 25 °C) δ (ppm) 1.02 – 1.29 (m, CH₂, ϵ -CL), 1.31 – 1.45 (m, CH₂, PCL), 1.97 – 2.02 (m, CH₂, ϵ -CL and PCL), 3.43 – 3.46 (m, CH₂, ϵ -CL), 3.82 – 3.87 (m, CH₂, PCL), 5.83 (br, CH caprolactonyl).

^{1.} A. Duda, Z. Florjanczyk, A. Hofman, S. Slomkowski, S. Penczek, *Macromolecules*, 1990, **23**, 1640-1646.