Supporting Information for

Highly stable mesoporous NiO-Y₂O₃-Al₂O₃ catalysts for CO₂ reforming of methane: Effect of Ni embedding and Y₂O₃

promotion

Xin Huang,^{a,b} Guangxin Xue,^{a,b} Changzhen Wang,^e Ning Zhao,^{a,e*} Nannan Sun,^{c*} Wei Wei^c and Yuhan Sun^c

^aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Peoples' Republic of China

^bUniversity of Chinese Academy of Sciences, Beijing 100039, Peoples' Republic of China

^cCAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, Peoples' Republic of China

^dEngineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, Peoples' Republic of China

^eNational Engineering Research Center for Coal-based Synthesis, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Peoples' Republic of China

Figure S1 TEM images of the calcined (a) NYA0, (b) NYA1, (c) NYA2, (d) NYA3, (e) NYA4 and (f) NYA5 catalysts.

Figure S2 TEM images of the (a) and (b) pure ordered mesoporous Al_2O_3, (c) and (d) $Y_2O_3\text{-}Al_2O_3.$

Figure S3 Y 3d_{5/2} XPS spectras of the pure Y₂O₃ and NiO-Y₂O₃ samples by calcine Y(NO₃)₃ and a Ni(NO₃)₂-Y(NO₃)₃ mixture at 750 °C.

Figure S4 (a) Nitrogen adsorption-desorption isotherms and (b) corresponding pore size distributions for the long-term I-NYA0, I-NYA2, NYA0 and NYA2 catalysts.

Figure S5 TEM images of whisker carbon over the long-term I-NYA0 catalyst.