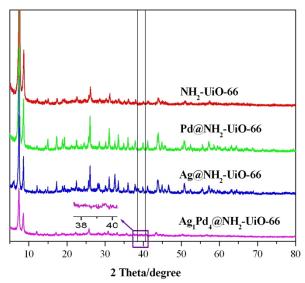
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

ELECTRONIC SUPPORTING INFORMATION (ESI)

Ag-Pd alloy supported on amine-functionalized UiO-66 as an efficient synergetic catalyst for dehydrogenation of formic acid at room temperature


Shu-Tao Gao, Weihua Liu, Cheng Feng*, Ning-Zhao Shang, Chun Wang*

$$x_a = \frac{P_{atm}V_{H_2} / RT}{n_{FA}}$$
 Equation S1

Where x_a is conversion, P_{atm} is the atmospheric pressure, V_{H_2} is the final generated volume of H_2 , R is the universal gas constant, T is room temperature (298K), and n_{FA} is the mole number of FA.

$$TOF = \frac{P_{atm}V_{H_2} / RT}{n_{Ag+Pd}t}$$
 Equation S2

Where TOF is turnover frequency at a certain conversion of FA to H₂, V_{H_2} is the generated volume of H₂, n_{Ag+Pd} is the mole number of the Ag and Pd, and t is the reaction time.

Figure S1 Powder X-ray diffraction patterns for NH₂-UiO-66, Pd@NH₂-UiO-66(5 wt%), Ag@NH₂-UiO-66(5 wt%), Ag₁Pd₄@NH₂-UiO-66(5 wt%).

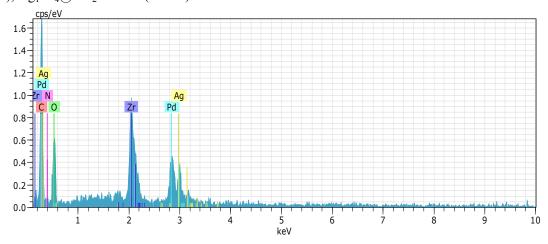
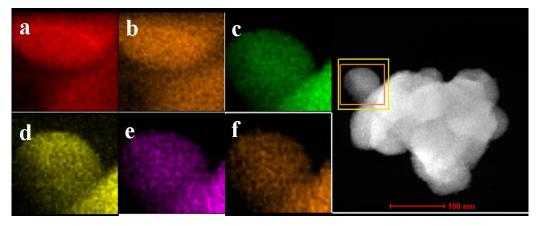



Figure S2 Energy-dispersive X-ray (EDX) spectrum of Ag₁Pd₄@NH₂-UiO-66.

 $\label{eq:Figure S3} \textbf{Figure S3} \ \text{The corresponding elemental mapping for (a) C, (b) N, (c) Zr, (d) O, (e) Pd and (f) Ag elements and HAADF-STEM image of (g) Ag_1Pd_4@NH_2-UiO-66.$

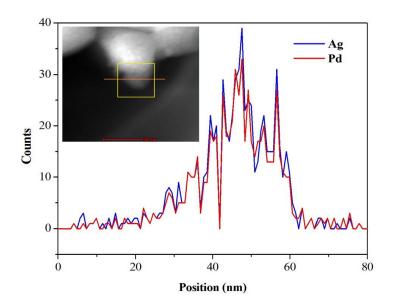
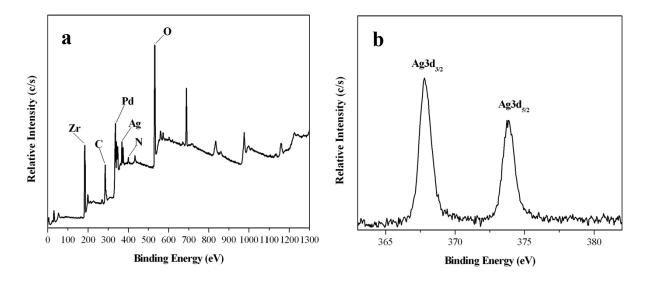



Figure S4 STEM-EDS line-scan EDS spectra of Ag₁Pd₄@NH₂-UiO-66.

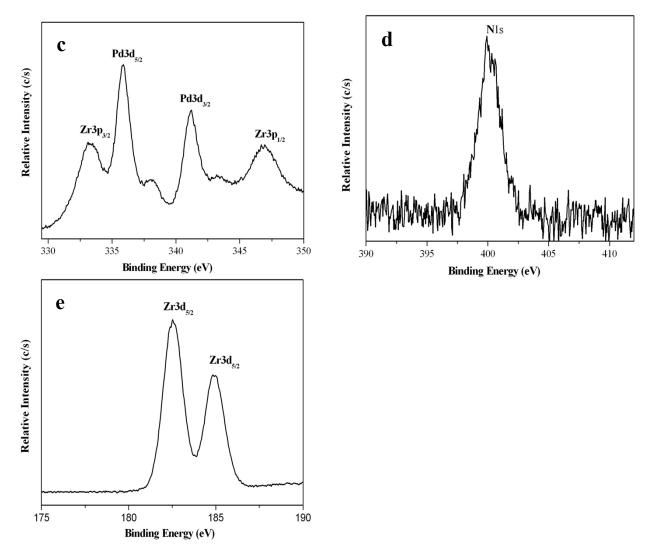


Figure S5 XPS patterns of Ag₁Pd₄@NH₂-UiO-66.

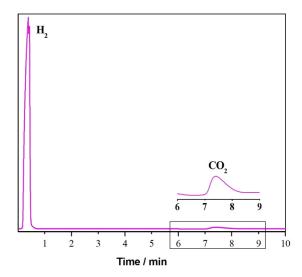
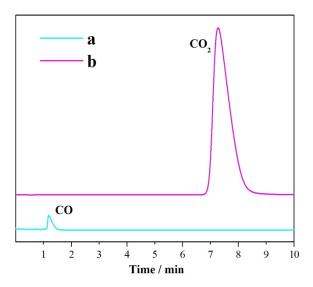



Figure S6 GC spectrum using TCD for the evolved gas from aqueous FA solution (1.25 M, 1.0 mL) over $Ag_1Pd_4@NH_2\text{-UiO-66 composite at 80 °C }(n_{metal}/n_{FA}=7.5\times10^{-3})$

Figure S7 GC spectrum using FID-Methanator for the (a) commercial pure CO, and (b) evolved gas from FA aqueous solution (1.25 M, 1.0 mL) over $Ag_1Pd_4@NH_2$ -UiO-66 composite at 80 °C ($n_{metal}/n_{FA} = 7.5 \times 10^{-3}$).

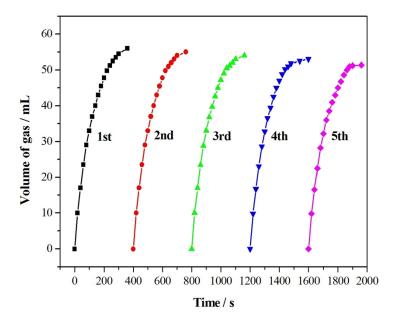


Figure S8 Stability test on the $Ag_1Pd_4@NH_2$ -UiO-66 catalyst in the dehydrogenation of 0.42M FA aqueous solution at 80 °C