Electronic Supporting Information One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation

Matthias Filez, Evgeniy A. Redekop, Hilde Poelman, Vladimir V. Galvita, Maria Meledina, Stuart Turner, Gustaaf Van Tendeloo, Christophe Detavernier and Guy B. Marin

Performance of Pt/Mg(Pt)(Al)O_x monometallic and Pt-Ga/Mg(Pt)(Ga)(Al)O_x bimetallic

Figure S-1: Catalytic propane dehydrogenation at 600 °C ($W_{cat}/F_{propane,0} = 4 \text{ kg}_{cat} \cdot \text{s} \cdot \text{mol}^{-1}$ and $P_{propane,0} = 5 \text{ kPa}$ at a total pressure of 101.3 kPa): site-time yield (STY) vs. time on stream: (a) one-pot synthesized Pt/Mg(Pt)(Al)O_x and (b) one-pot synthesized Pt-Ga/Mg(Pt)(Ga)(Al)O_x (red = CH₄, blue = H₂, green = C₃H₆).

Stability test for Pt-In/Mg(Pt)(In)(Al)O_x

The stability of the one-pot synthesized Pt-In/Mg(Pt)(In)(Al)O_x catalyst was tested for 6 hours. Figure S-2 shows the products obtained during catalytic propane dehydrogenation at 600 °C. Notably, the partial pressure of propane was set to 20 kPa, in contrast to 5 kPa for other catalytic experiments (Figure S-1 and Figure 4). This was done to subject the catalyst to more severe reaction conditions, which could more directly uncover deactivation phenomena.

Figure S-2: Catalytic propane dehydrogenation at 600 °C ($W_{cat}/F_{propane,0} = 4 \text{ kg}_{cat} \cdot \text{s} \cdot \text{mol}^{-1}$ and $P_{propane,0} = 20 \text{ kPa}$ at a total pressure of 101.3 kPa): site-time yield (STY) vs. time on stream.