Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

1	Supplementary Information for
2	Ru/N-AC catalyst to produce vinyl chloride from
3	acetylene and 1, 2-dichloroethane
4	
5	Wei Zhao ^a , Wei Li ^a , Jinli Zhang ^{*a,b}
6	
7	^a School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072,
8	People's Republic of China.
9	^b School of Chemistry & Chemical Engineering, Shihezi University, Xinjiang, Shihezi
10	832000, People's Republic of China.
11	* To whom correspondence may be addressed.
12	Fax: +86-22-2740-3389; Tel: +86-22-2789-0643.
13	E-mail address: zhangjinli@tju.edu.cn (J.L. Zhang)

- 1 Table of contents:
- 2 Table S1. Weight loss of fresh and used catalysts under different temperature ranges.
- 3 Table S2. The absolute content of Ru in the catalysts, determined by ICP-AES.
- 4 Table S3. Desorption amount of the catalysts, determined by TPD measurement.
- 5 Fig. S1. Experimental catalyst testing setup.
- 6 Fig. S2. Effect of internal diffusion factor.
- 7 Fig. S3. Effect of external diffusion factor.
- 8 Fig. S4. Effect of Ru content on the activity of Ru/N-AC catalyst.
- 9 Fig. S5. Nitrogen adsorption-desorption isotherms and pore size distribution from HK
- 10 method of the catalysts.
- 11 Fig. S6. High-resolution XPS spectra of N 1s for the catalysts.
- 12 Fig. S7. High-resolution XPS spectra of Ru 3p for the catalysts.
- 13 Fig. S8. TEM-EDX images of the catalysts.
- 14 Fig. S9. Acetylene conversion in the one-step synthesis (A longer reaction time).

1 Table S1

2	Weight loss	of fresh an	d used ca	atalysts ur	nder differen	t temperature ranges.
				-1		

Catalysts	Temperature range (°C)				
	<150	150-300	300-400	150-400	
Fresh 1% Ru/AC	0.6	0.6	2.9	3.5	
Used 1% Ru/AC	1.2	2.6	11.2	13.8	
Fresh 1% Ru/N-AC	3.0	1.2	3.1	4.3	
Used 1% Ru/N-AC	3.4	2.4	9.1	11.5	

3

4 Table S2

5 The absolute content of Ru in the catalysts, determined by ICP-AES.

Catalyst	Ru, wt %	
Fresh 1% Ru/AC	0.79	
Fresh 1% Ru/N-AC	0.78	
Used 1% Ru/AC	0.56	
Used 1% Ru/N-AC	0.65	

6

7 Table S3

8 Desorption amount of the catalysts, determined by TPD measurement.

Samplas	Desorption area of	Desorption area of	Desorption area of
Samples	EDC	C_2H_2	VCM
Fresh AC	2497	2069	2606
Fresh 1%Ru/AC	2854	3828	2639
Fresh N-AC	5704	3722	4538
Fresh 1%Ru/N-AC	5813	4951	5029
Used 1%Ru/N-AC	3665	2190	2987
Used 1%Ru/AC	969	1328	1506

9 The weight of all these samples is 100 mg.

Fig. S1. Experimental catalyst testing setup.

3 1. Nitrogen, 2. Acetylene, 3. EDC, 4. Pressure relief valve, 5. Micro-injection pump, 6.

4 Filter, 7. Mass flowmeter, 8. One-way check valve, 9. Vaporizing chamber, 10.

5 Furnace, 11. Reactor, 12. Thermocouple, 13. Catalyst, 14. Condenser, 15. Buffer tank.

6

9

1

2

Fig. S2. Effect of internal diffusion factor. Reaction conditions: 250 °C, 0.1 MPa, the
mass of each catalyst sample: 15 g; EDC volume flow rate: 0.10 mL min⁻¹, molar

ratio $n(EDC)/n(C_2H_2) = 1$.

8 250 °C, 0.1 MPa, LHSV (EDC) = 0.2 h⁻¹, GHSV (C_2H_2) = 57 h⁻¹, molar ratio

9
$$n(EDC)/n(C_2H_2) = 1$$

Fig. S5. Nitrogen adsorption-desorption isotherms and pore size distribution from HK
method of the catalysts. All the isotherms belonged to type I curves, and due to
abundant micropore structure in activated carbon, the H4 adsorption–desorption
hysteresis loop based on IUPAC nomenclature could be observed in the isotherms.

Fig. S6. High-resolution XPS spectra of N 1s for fresh and used catalyst.

Fig. S7. High-resolution XPS spectra of Ru 3p for the catalysts.

3 TEM-EDX images of the 1% Ru/N-AC catalyst and the N-AC catalyst were shown in
4 the Fig. S5. The results illustrated that there is about 0.5% weight of Ru in the 1%
5 Ru/N-AC catalyst while none of the Ru were detected on the N-AC catalyst (0.0%).

Fig. S9. Acetylene conversion in the one-step synthesis (A longer reaction time).

3 Reaction conditions: 250 °C, 0.1 MPa, LHSV (EDC) = 0.2 h⁻¹, GHSV (C_2H_2) = 57 h⁻¹,

molar ratio $n(EDC)/n(C_2H_2) = 1$.