Electronic Supplementary Information

## Tuning the selectivity toward CO evolution in the photocatalytic conversion of $CO_2$ by $H_2O$ through the modification of Agloaded $Ga_2O_3$ with a $ZnGa_2O_4$ layer

Zheng Wang,<sup>a</sup> Kentaro Teramura,<sup>\*a,b,c</sup> Zeai Huang,<sup>a</sup> Saburo Hosokawa,<sup>a,b</sup> Yoshihisa Sakata,<sup>d</sup> and Tsunehiro Tanaka<sup>\*a,b</sup>

| a | Department of Molecular Engineering, Graduate School of Engineering, Ky                                                           |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | University                                                                                                                        |  |  |
|   | Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan<br>E-mail: teramura@moleng.kyoto-u.ac.jp<br>tanakat@moleng.kyoto-u.ac.jp |  |  |
|   |                                                                                                                                   |  |  |
|   |                                                                                                                                   |  |  |
| b | Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto                                                             |  |  |
|   | University                                                                                                                        |  |  |
|   | Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8520, Japan                                                                          |  |  |
| c | Precursory Research for Embryonic Science and Technology (PRESTO), Japan                                                          |  |  |
|   | Science and Technology Agency (JST)                                                                                               |  |  |
|   | 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan                                                                                  |  |  |
| d | Graduate School of Science and Engineering, Yamaguchi University                                                                  |  |  |
|   | 2-16-1 Tokiwadai, Ube 755-8611, Japan                                                                                             |  |  |

| Sample                                              | The atomic ratio of Ag at the surface |
|-----------------------------------------------------|---------------------------------------|
|                                                     | (Ag/Zn+Ga+O)                          |
| Ag(1.0 wt%)-loaded bare $Ga_2O_3$                   | 5.1%                                  |
| Ag(1.0 wt%)-loaded Zn(0.1 mol%)-modified $Ga_2O_3$  | 5.6%                                  |
| Ag(1.0 wt%)-loaded Zn(0.5 mol%)-modified $Ga_2O_3$  | 4.9%                                  |
| Ag(1.0 wt%)-loaded Zn(1.0 mol%)-modified $Ga_2O_3$  | 5.0%                                  |
| Ag(1.0 wt%)-loaded Zn(3.0 mol%)-modified $Ga_2O_3$  | 5.0%                                  |
| Ag(1.0 wt%)-loaded Zn(5.0 mol%)-modified $Ga_2O_3$  | 4.5%                                  |
| Ag(1.0 wt%)-loaded Zn(10.0 mol%)-modified $Ga_2O_3$ | 4.2%                                  |

Table S1 The atomic ratio of Ag at the surface in each sample





Figure S1 XPS Zn 2p line (A) for Zn-modified Ga<sub>2</sub>O<sub>3</sub> with 0.1 mol% (a), 0.5 mol% (b), 1.0 mol% (c), 3.0 mol% (d), 5.0 mol% (e), and 10.0 mol% (f) of Zn species, and Ga 2p line (B) for bare Ga<sub>2</sub>O<sub>3</sub> (a) and Zn-modified Ga<sub>2</sub>O<sub>3</sub> with 0.1 mol% (b), 0.5 mol% (c), 1.0 mol% (d), 3.0 mol% (e), 5.0 mol% (f), and 10.0 mol% (g) of Zn species.



Figure S2 SEM image (a) of Ag(1.0 wt%)-loaded Zn(3.0 mol%)-modified  $Ga_2O_3$  and elemental mapping of Ag (b), Ga (c), and Zn (d) for SEM image



Figure S3 UV-Vis DRS of Ag-loaded  $Ga_2O_3$  and Ag-loaded Zn-modified  $Ga_2O_3$  with various Zn loading amount.



Figure S4 XPS Ag 3d line (A), Ga 2p line (B) and O 1s line (C) for Ag-loaded bare Ga<sub>2</sub>O<sub>3</sub> (a) and Ag-loaded Zn-modified Ga<sub>2</sub>O<sub>3</sub> with 0.1 mol% (b), 0.5 mol% (c), 1.0 mol% (d), 3.0 mol% (e), 5.0 mol% (f), and 10.0 mol% (g) of Zn species, and Zn 2p line (D) for Ag-loaded Zn-modified Ga<sub>2</sub>O<sub>3</sub> with 0.1 mol% (a), 0.5 mol% (b), 1.0 mol% (c), 3.0 mol% (d), 5.0 mol% (e), and 10.0 mol% (f) of Zn species.



Figure S5 The Ag K-edge XANES (A), EXAFS (B) and Fourier transforms of EXAFS (C) spectra of Ag foil (a), Ag<sub>2</sub>O (b), Ag(1.0 wt%)-loaded Ga<sub>2</sub>O<sub>3</sub> (c) and Ag(1.0 wt%)-loaded Zn(3.0 mol%)-modified Ga<sub>2</sub>O<sub>3</sub> (d).



Figure S6 (a) UV-Vis DRS of  $ZnGa_2O_4$  and (b) XPS valence band spectra of  $Ga_2O_3$  and  $ZnGa_2O_4$ . The difference of the valence band between  $ZnGa_2O_4$  and  $Ga_2O_3$  is about 0.8 eV.