Bimetallic bis(benzotriazole iminophenolate) cobalt, nickel and zinc complexes as versatile catalysts for coupling of carbon dioxide with epoxides and copolymerization of phthalic anhydride with cyclohexene oxide

Chun-Yue Yu, Hui-Ju Chuang and Bao-Tsan Ko*

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

Fig. S1 ¹H NMR spectrum of the purified copolymer produced by using di-nickel acetate complex 2 (Table 2, entry 8) in CDCl₃. Peak at δ 4.65 ppm is assigned to the methine protons in PCHC, and no significant signals at 3.2-3.6 ppm confirms >99% carbonate linkages in PCHC.

Fig. S2 ¹H NMR spectra of the methine region of crude sample produced by coupling of CO₂ and cyclohexene oxide using di-zinc acetate complex 3 (Table 3, entry 8) in the presence of *n*-Bu₄NBr (0.0625 mol%) at 120 °C and 300 psi CO₂ (400 MHz, CDCl₃).

Fig. S3 GPC traces for the produced poly(PA-*alt*-CHO) with a bimodal molecular weight distribution catalysed by di-Co complex **1** (Table 4, entry 1).

Fig. S4 Copolymerization of PA and CHO catalysed by di-Co complex 1 at 110 °C. The relationship between $M_n(\bullet)/(PDI(\blacktriangle))$ of polymer and the initial molar ratio $[PA]_0/[Cat.]_0$ is shown.

 Table S1 Crystallographic data of complexes 1-6

Fig. S1 ¹H NMR spectrum of the purified copolymer produced by using di-nickel acetate complex **2** (Table 2, entry 8) in CDCl₃. Peak at δ 4.65 ppm is assigned to the methine protons in PCHC, and no significant signals at 3.2-3.6 ppm confirms >99% carbonate linkages in PCHC.

Fig. S2 ¹H NMR spectra of the methine region of crude sample produced by coupling of CO₂ and cyclohexene oxide using di-zinc acetate complex 3 (Table 3, entry 8) in the presence of *n*-Bu₄NBr (0.0625 mol%) at 120 °C and 300 psi CO₂ (400 MHz, CDCl₃).

Fig. S3 GPC traces for the produced poly(PA-*alt*-CHO) with a bimodal molecular weight distribution catalysed by di-Co complex **1** (Table 4, entry 1).

Fig. S4 Copolymerization of PA and CHO catalysed by di-Co complex 1 at 110 °C. The relationship between $M_n(\bullet)/(PDI(\blacktriangle))$ of polymer and the initial molar ratio $[PA]_0/[Cat.]_0$ is shown.

	1·2CH ₂ Cl ₂	2·2EtOH	3·CH ₂ Cl ₂	4	5	6
Formula	$C_{53}H_{68}Cl_4Co_2N_8O_6$	$C_{55}H_{76}N_8Ni_2O_8$	$C_{52}H_{66}Cl_2N_8O_6Zn_2$	C ₄₈ H ₆₀ N ₈ O ₇ Co ₂	C44H52N8O2Ni	C44H52N8O2Zn
Formula weight	1172.81	1094.66	1100.77	978.91	783.63	790.32
Temp (K)	120(2)	120(2)	120(2)	120(2)	150(2)	120(2)
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Monoclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> 2(1)/n	<i>P</i> -1	<i>P</i> -1	<i>C</i> 2/c	<i>P</i> -1
a (Å)	12.2124(6)	13.1227(6)	12.9858(11)	12.0764(3)	28.656(2)	12.6986(10)
b (Å)	12.9259(8)	12.4772(4)	14.1768(11)	13.8920(4)	11.8914(8)	12.8906(13)
c (Å)	18.2099(9)	34.7916(16)	16.4564(12)	19.0298(5)	28.057(2)	14.9043(16)
α (deg)	81.229(5)	90	66.927(7)	104.928(2)	90	90.191(9)
β (deg)	83.807(4)	100.473(4)	89.457(6)	100.071(2)	110.549(2)	108.659(8)
$\gamma(\text{deg})$	78.292(5)	90	72.168(7)	90.969(2)	90	92.048(7)
$V(Å^3)$	2773.0(3)	5601.7(4)	2632.1(4)	3030.81(14)	8952.5(11)	2309.7(4)
Ζ	2	4	2	2	8	2
$D_{\text{calc}}(\text{Mg/m}^3)$	1.405	1.298	1.389	1.313	1.286	1.330
μ (Mo K α)(mm ⁻¹)	0.846	0.731	1.069	0.612	0.486	2.230
<i>F</i> (000)	1224	2328	1152	1261	3672	972
Reflections collected	36981	31571	23383	33237	107795	20732
No. of parameters	672	670	653	739	550	560
Indep. reflns (R_{int})	13181(0.0540)	13249(0.0465)	12009(0.0519)	14087(0.0390)	9159(0.0823)	8741(0.0918)
$R1[I > 2\sigma(I)]$	0.0685	0.0694	0.0626	0.0777	0.0951	0.1020
wR2 $[I > 2\sigma(I)]$	0.1535	0.1491	0.1261	0.2171	0.2706	0.2717
Goodness-of-fit on F^2	1.035	1.029	1.012	1.025	1.002	1.009

 Table S1 Crystallographic data of complexes 1-6