1. General procedure for preparation of carbonized loofah (CL)

Firstly, loaded Loofah into a tube furnace and heated at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ up to $600^{\circ} \mathrm{C}$ for 3 hours under an Ar atmosphere to furnish carbonized loofah (CL).

2. Repeating Experiments

After the photocatalysis of Suzuki reaction was performed, the catalyst was filtered, washed with water and acetone, dried and reused for the next cycle. Each cycle followed the general procedure mentioned above.

Table S1 The comparison of Pd content using carrier with/without PDA ${ }^{\text {a }}$

Catalyst	Pd content $(w t \%)^{b}$
Pd@B-BO	3.0^{58}
Pd@ PDA-CL	12.5
Pd@CL	3.6
Pd@SG	4.7
Pd@PDA-SG	12.1

${ }^{\text {a }}$ The catalysts were prepared according to literature: carrier (200 mg) in water (20 mL) mixed with acetone solution $(5 \mathrm{~mL})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}(70 \mathrm{mg})$ and stirred at $90^{\circ} \mathrm{C}$ for 1 h. ${ }^{\text {b }} \mathrm{Pd}$ content in catalysts were determined via inductively coupled plasma (ICP).

Figure S1 XRD patterns of CL, PDA-CL and Pd@PDA-CL

Figure S2 Electron paramagnetic resonance (EPR) spectra of Pd@CL and Pd@PDA-CL under light irradiation

Table S2 Photocatalytic Suzuki Coupling Reaction Using Recycled Pd@PDA-CL catalyst ${ }^{\text {a }}$

Entry	Yield $^{\mathrm{b}}(\%)$	Pd content $^{\mathrm{c}}(\mathrm{wt} \mathrm{\%})$
1	96	3.2
2	93	3.2
3	95	3.0
4	97	3.1
5	92	3.0

${ }^{a}$ Reaction conditions: iodobenzene (1 mmol), phenylboronic acid (1.1 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$
(1.5 mmol), recycled Pd@PDA-CL (20 mg), DMF/ $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL} / 3 \mathrm{~mL})$, white LED lamp (1.2 W/cm ${ }^{2}$), room temperature, $2 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{C}} \mathrm{Pd}$ content in catalysts were determined via inductively coupled plasma (ICP).

3. NMR data of coupling products.

2-Methoxy-1,1'-biphenyl ${ }^{[51]}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.54$ (dd, J = $6.5,0.9 \mathrm{~Hz}), 7.42(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.33(\mathrm{~m}), 7.04(\mathrm{td}, \mathrm{J}=6.0,0.8 \mathrm{~Hz}), 7.01$ $6.98(\mathrm{~m}), 3.82$ (s) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.51,138.60$, $130.95,130.77,129.60,128.67,128.03,126.97,120.88,111.28,55.59$ ppm.

1-([1,1'-Biphenyl]-2-yl)ethanone ${ }^{[52]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56$ (dd, J = 6.1, 0.9 Hz), $7.52(\mathrm{td}, \mathrm{J}=6.0,1.1 \mathrm{~Hz}), 7.46-7.38(\mathrm{~m}), 7.35(\mathrm{t}, \mathrm{J}=$ $1.6 \mathrm{~Hz}), 7.34(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}), 2.01(\mathrm{~s}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 204.89, 140.92, 140.75, 140.54, 130.74, 130.26, 128.88, 128.70, 127.90, 127.47, 30.45 ppm.

4-Methoxy-1,1'-biphenyl ${ }^{[51]}{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.61-7.54$ $(\mathrm{m}), 7.45(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 7.34(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}), 7.04-6.99(\mathrm{~m}), 3.89(\mathrm{~s}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.20,140.87,133.81,128.78,128.20$, 126.78, 126.71, 114.25, 55.36 ppm.

4-Nitro-1,1'-biphenyl ${ }^{[51]}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.33(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz})$, $7.77(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}), 7.66(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}), 7.53(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 7.48(\mathrm{t}, \mathrm{J}=5.8$ $\mathrm{Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=147.63,147.09,138.76,129.17$, 128.94, 127.80, 127.39, 124.11 ppm.

1-([1,1'-Biphenyl]-4-yl)ethanone ${ }^{[S 1]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.04$ (d, $\mathrm{J}=6.6 \mathrm{~Hz}), 7.69(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}), 7.63(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}), 7.47(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz})$, $7.40(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}), 2.64(\mathrm{~s}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=197.75$,
$145.78,139.88,135.86,128.95,128.25,127.27,127.24,26.68 \mathrm{ppm}$.
Methyl 6-phenyl-2-naphthoate ${ }^{[53]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.66$ (s), $8.14-8.08(\mathrm{~m}), 8.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 7.96(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}), 7.84(\mathrm{dd}, \mathrm{J}=6.8$, $1.4 \mathrm{~Hz}), 7.76(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 7.53(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.44(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}), 4.03(\mathrm{~s})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=167.23,140.95,140.55,135.82$, 131.65, 130.83, 129.88, 128.98, 128.41, 127.85, 127.49, 127.38, 126.41, 125.71, 125.57, 52.25 ppm .

2-Methoxy-6-phenyInaphthalene ${ }^{[53]}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.01$ (d, J = 1.2 Hz), $7.84(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}), 7.75(\mathrm{ddd}, \mathrm{J}=6.3,4.9,1.1 \mathrm{~Hz}), 7.54-$ $7.48(\mathrm{~m}), 7.44-7.36(\mathrm{~m}), 7.23-7.18(\mathrm{~m}), 3.98(\mathrm{~s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=157.81,141.25,136.42,133.82,129.77,129.23,128.87$, $127.27,127.11,126.08,125.66,119.20,105.62,55.36 \mathrm{ppm}$.

1,1'-Biphenyl ${ }^{[54]}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.64(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}), 7.48(\mathrm{t}$, $\mathrm{J}=6.1 \mathrm{~Hz}), 7.39(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=141.30$, 128.81, 127.30, 127.23 ppm.
$1,1^{\prime}: 4^{\prime}, 1^{\prime \prime}-$ Terphenyl $^{[55]}{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.67(\mathrm{~s}), 7.64(\mathrm{~d}, \mathrm{~J}=$ $5.7 \mathrm{~Hz}), 7.46(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.36(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=140.73,140.15,128.83,127.51,127.36,127.07 \mathrm{ppm}$.

2-Chloro-1,1'-biphenyl ${ }^{[54]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.50(\mathrm{dd}, \mathrm{J}=7.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.37$ (dd, J = 7.4, 2.0 Hz, 1H), $7.35(d d, J=7.2,1.4 H z, 1 H), 7.33-7.29(m, 1 H)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=140.59,139.47,132.56,131.42$,
$129.98,129.49,128.56,128.08,127.64,126.85 \mathrm{ppm}$.
3-Methoxy-1,1'-biphenyl ${ }^{[56]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.64-7.60(\mathrm{~m}$, $1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dt}, \mathrm{J}=7.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta=160.01,142.83,141.16,129.79$, 128.78, 127.46, 127.24, 119.73, 112.96, 112.73, 55.32 ppm.
[1,1'-Biphenyl]-3-carbonitrile ${ }^{[57]}{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta=7.88$ (s, $1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 3 \mathrm{H})$, $7.50(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=142.45,138.87,131.49,130.70,129.61,129.14,128.41$, 127.09, 118.85, 112.97 ppm.

4-Fluoro-1,1'-biphenyl ${ }^{[54]}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.61-7.55(\mathrm{~m})$, $7.49-7.44(m), 7.40-7.35(m), 7.19-7.13(\mathrm{~m})$ ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=163.49,161.53,140.29,137.38,128.85,128.74,128.69$, $127.29,127.05,115.72,115.55 \mathrm{ppm}$.

4-Methyl-1,1'-biphenyl ${ }^{[55] ~ 1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.62(\mathrm{dd}, \mathrm{J}=8.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta=141.23,138.43,137.05,129.53,128.76,127.03,21.14 \mathrm{ppm}$.
[1,1'-Biphenyl]-3-carbaldehyde ${ }^{[56]}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.11$ (s, $1 \mathrm{H}), 8.13(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{ddd}, \mathrm{J}=$ 13.1, 8.7, $4.5 \mathrm{~Hz}, 3 \mathrm{H}$), 7.50 (dd, J = 10.6, $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (dd, J = 8.2, 6.5
$\mathrm{Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=192.33$, 142.17, 139.70, 136.95, 133.05, 129.50, 129.02, 128.63, 128.19, 128.03, 127.15 ppm.

Methyl [1,1'-biphenyl]-4-carboxylate ${ }^{[54]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $8.15-8.10(\mathrm{~m}), 7.70-7.66(\mathrm{~m}), 7.65(\mathrm{dd}, \mathrm{J}=4.2,2.7 \mathrm{~Hz}), 7.49(\mathrm{dd}, \mathrm{J}=$ 8.3, 3.8 Hz), $7.44-7.39(\mathrm{~m}), 3.96(\mathrm{~s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 166.99, 145.64, 140.01, 130.11, 128.93, 128.15, 127.28, 127.05, 52.11 ppm.

3-Phenylquinoline ${ }^{[59]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.19(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, 1H), 8.29 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.16 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 ($\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}$, 1H), $7.75-7.67$ (m, 3H), $7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44$ (ddd, $\mathrm{J}=7.4,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.94$, 147.33, 137.89, 133.88, 133.30, 129.45, 129.22, 128.16, 128.06, 127.46, 127.06.

1-(5-Phenylthiophen-2-yl)ethanone ${ }^{[54]}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.65(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=190.62,152.80,143.14$, 133.49, 133.37, 129.16, 129.08, 126.31, 123.94, 26.59.

4. References

S1 J. S. Fairlamb, A. R. Kapdi and A. F. Lee, Org. Lett., 2004, 6, 4435.

S2 Sapountzis, W. Lin, C. C. Kofink, C. Despotopoulou and P. Knochel, Angew. Chem. Int. Ed., 2005, 44, 1654.

S3 B. T. Guan, Y. Wang, B. J. Li, D. G. Yu and Z. J. Shi, J. Am. Chem. Soc., 2008, 130, 14468.

S4 W. J. Zhou, K. H. Wang and J. X. Wang, Adv. Synth. Catal., 2009, 351, 1378.

S5 L. Bai and J. X. Wang, Adv. Synth. Catal., 2008, 350, 315.
S6 D. Srimani, S. Sawoo and A. Sarkar, Org. Lett., 2007, 9, 3639.

S7 B. Tao and D. W. Boykin, J. Org. Chem., 2004, 69, 4330.
S8 Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang, Chem. Mater., 2015, 27, 1921.

S9 D. Srimani and A. Sarkar, Tetrahedron Lett., 2008, 49, 6304.
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of products of the photocatalytic Suzuki coupling reactions using different substrates.

$\stackrel{\circ}{8}$	-	
-	$\stackrel{\text { ¢ }}{\text { ¢ }}$	
\|	\|	

