Electronic Supplementary Information (ESI)

Active and Regioselective Rhodium Catalyst Supported on Reduced Graphene

Oxide for 1-Hexene Hydroformylation

Minghui Tan,^{*a,b*} Guohui Yang,^{*b*} Tiejun Wang,^{*d*} Tharapong Vitidsant,^{*e*} Jie Li,^{*b*} Qinghong Wei,^{*b*} Peipei Ai,^{*b*} Mingbo Wu,^{*a**} Jingtang Zheng,^{*a**} and Noritatsu Tsubaki^{*b,c**},

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China. E-mail: wumb@upc.edu.cn, jtzheng03@163.com

^b Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan. E-mail: tsubaki@eng.u-toyama.ac.jp. Phone: +(81)-76-445-6846. Fax: +(81)-76-445-6846.

^c JST, CREST, Gobancho 7, Chiyoda-ku, Tokyo 102-0076, Japan

^d CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, PR China

^e Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Experimental Section

Preparation of Graphite Oxide: 10.0 g graphite powder and 5.0 g NaNO₃ were mixed in a flask cooled in ice bath. 230 mL of concentrated H₂SO₄ solution was added into the above mixture. After stirring for 10 min, KMnO₄ was gradually and slowly added into the mixture and then the mixture was under stirring in the ice bath for another 15 min. The flask was put into a water bath at 35 °C and stirred for 50 min. Then, 460 mL of water was added into the above mixture evenly and slowly, and the temperature of water bath was quickly increased to 98 °C and stirred for another 30min. Finally, 1000 mL of deionized water and moderate 30% H₂O₂ were slowly added into the mixture and stirred for 5 min. The obtained mixture was immediately filtrated and the filter cake was washed by 10% HCl solution for several times to remove residual salt, and then washed by deionized water until the pH > 6. The collected solid was dried under vacuum at 50 °C for 48 h.

Pre-treatment of AC and CNTs: AC (40-60 meshes, Kanto Chemical Co. Inc., Japan) was heated in 35% HNO₃ at 90 °C for 6 h. CNTs (inner diameter: 20–30 nm; length: 1–10 μm; Chengdu Organic Chemistry Co. Ltd., China) was heated in 65% HNO₃ at 120 °C for 14 h. After being refluxed, the sample was washed with deionized water until pH=7, and then dried at 60 °C over 12 h.

CO-TPD: Sample was pretreated with Ar gas flow at 150 °C for 1 h. After temperature was cooled down to 40 °C, the gas was switched to CO for 30 min, and then pure He was introduced to purge for 30 min. The CO-TPD experiment was performed in He flow at a heating rate of 5 °C·min⁻¹, where the desorbed CO was detected by a mass spectrometry.

Figure S1 FTIR spectra of Rh/AC (a) and Rh/CNTs (b)

Figure S2 XPS spectra of fresh and spent Rh/CNTs: (a) survey spectra of fresh Rh/CNTs, (b) survey spectra of spent Rh/CNTs, (c) C1s of fresh Rh/CNTs, (d) C1s of spent Rh/CNTs, (e) Rh3d region XPS spectra of fresh Rh/CNTs, (f) Rh3d region XPS spectra of spent Rh/CNTs

Figure S3 XPS spectra of fresh and spent Rh/AC: (a) survey spectra of fresh Rh/AC, (b) survey spectra of spent Rh/AC, (c) C1s of fresh Rh/AC, (d) C1s of spent Rh/AC, (e) Rh3d region XPS spectra of fresh Rh/AC, (f) Rh3d region XPS spectra of spent Rh/AC

Figure S4 TEM images of Rh/RGO(a), Rh/AC(b), Rh/CNTs(c) and spent Rh/RGO(d)