Supporting Information

Development of Silica Supported Frustrated Lewis Pairs: Highly Active Transition Metal-Free Catalysts for Z-Selective Reduction of Alkyne

Kai C. Szeto,a Wissam Sahyoun,^a Nicolas Merle,^a Jessica Llop Castelbou,^a Nicolas Popoff,^a Frédéric Lefebvre,^a Jean Raynaud,^a Cyril Godard,^b Carmen Claver,^b Laurent Delevoye,^c Régis M. Gauvin,^c and Mostafa Taoufik^{*,a}

^a C2P2, CNRS-UMR 5265, Université Lyon 1, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, 69626 Villeurbanne Cedex, France

^b Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Marcel.li Domingo s/n, Campus Sescelades, 43007, Tarragona, Spain

 $^{\rm c}$ UCCS (CNRS-UMR 8181), Université Lille Nord de France, USTL, 59652 Villeneuve d'Ascq, France $^{\rm b}$

Figure S1. ¹H MAS NMR (500 MHz, 8 scans, relaxation delay of 5 s, 10 kHz spinning speed) spectra of 1 (a) and 2 (b).

Figure S2. DRIFT spectrum of 3b.

Figure S3. ¹H MAS (500 MHz, 8 scans, relaxation delay of 5 s, 10 kHz spinning speed) and ¹³C CP/MAS (125.7 MHz, 30000 scans, relaxation delay of 5 s, 10 kHz spinning speed) NMR spectra of **3a**.

Figure S4. ¹H MAS (500 MHz, 8 scans, relaxation delay of 5 s, 10 kHz spinning speed) ¹³C CPMAS NMR (125.7 MHz, 30000 scans, relaxation delay of 5 s, 10 kHz spinning speed) spectra of **3b**.

Figure S5. ¹⁹F MAS NMR (476.5 MHz, 64 scans, relaxation delay of 5 s, 12 kHz spinning speed) spectra of **3a** (left, dotted curves represent deconvoluted peaks) and **3b** (right, dashed curves present deconvoluted peaks), spinning side bands (*) were determined by changing the spinning rate (7 kHz, 10 kHz), "o" corresponds to signal from Krytox® vaccum grease (DuPont).

Figure S6. ¹¹B NMR spectrum (left) and ³¹P NMR spectrum (right) of PPh₃·HB(C₆F₅)₂ in C₆D₆.

Figure S7. MAS-D-HMQC experiment of 3b to a pair of nuclei { ^{11}B , ^{31}P }

Scheme S1. Restructuration of $[HB(C_6F_5)_2] \cdot [PPh_3]$ in solution after hydrogen addition.

Figure S8. Kinetic study of the conversion of 3-hexyne at 10 bar hydrogen, 80 °C and 2 mol% of 3a in pentane.

Figure S9. GC chromatogram of the hydrogenation of a) 1,2-diphenylethyne.

Figure S10. GC chromatogram of the hydrogenation of b) (hex-2-yn-1-yloxy)trimethylsilane.

Figure S11. GC chromatogram of the hydrogenation of c) alkyne derived from oleic methyl ester: methyl octadec-9-ynoate..