Supporting information for:

Photo-assisted electrodeposition of manganese oxide on TaON anodes: effect on water photooxidation capacity under visible light irradiation

Satnam Singh Gujral^a, Alexandr N. Simonov^a, Xi-Ya Fang^b, Masanobu Higashi^c, Thomas Gengenbach^d, Ryu Abe^c and Leone Spiccia^a*

^aSchool of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia

E-mail: leone.spiccia@monash.edu; Fax: +61 3 9905 4597; Tel: +61 3 9905 4526

^bMonash Centre for Electron Microscopy, Monash University, Victoria, 3800, Australia

^cDepartment of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

^dCommonwealth Scientific and Industrial Research Organization Manufacturing Flagship, Clayton, Victoria 3168, Australia

Supporting Information Contents	Page
Figures S1 and S2 showing the effect of t_{dep} on photoactivity of MnO _x /TiO ₂ -TaON	S1-S2
Figure S3 and S4 showing the effect of c_{Mn} on photoactivity of MnO _x /TiO ₂ -TaON	S3
Figure S5 showing XP spectra	S4
Table S1 showing binding energy values	S5
Figure S6 showing SEM images for MnO_x/FTO ($E_{dep} = 0.7 \text{ V}$) and MnO_x/TiO_2 -TaON ($E_{dep} = 0.0 \text{ and } 0.9 \text{ V}$)	S6
Figure S7 showing EDX spectra	S7
Figure S8 showing extended EIS data	S8
Figure S9 showing chronoamperograms for water photooxidation at 1.0 V	S9
Figure S10 showing SEM images for MnO_x/TiO_2 -TaON after water photooxidation at 1.0 V	S10
Figure S11 comparing voltammetric water photooxidation in different solutions	S11
Figure S12 comparing chronoamperometric (1.0 V) water photooxidation in different solutions	S12
Figure S13 showing voltammograms used for calculation of the IPCE spectra	S13
Figure S14 showing IPCE spectra at different potentials	S14

Figure S1. (A, B) Voltammograms (scan rate, v = 0.025 V s⁻¹) for water oxidation by TiO₂-TaON (black) and MnO_x/TiO₂-TaON films ($t_{dep} = 1.5$ (blue) and 5 min (magenta)) in contact with aqueous 0.1 M Na₂SO₄ (pH = 6) under chopped visible light irradiation (1 sun, $\lambda > 400$ nm). (C, D) Photooxidation current densities at different potentials derived from voltammograms (exemplified in panels A and B) for (i) TiO₂-TaON and (ii-viii) MnO_x/TiO₂-TaON prepared using defined t_{dep} . Currents are normalised to the geometric surface area of the films. MnO_x was electrodeposited (A, C) in dark and (B, D) under continuous visible light irradiation (1 sun, $\lambda > 400$ nm) from aqueous 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at $J_{dep} = 250 \ \mu A \ cm^{-2}$ for the defined t_{dep} .

Figure S2. Chronoamperograms obtained for water photooxidation at 1 V (*vs.* Ag|AgCl) by (i) TiO₂-TaON and (ii-vi) MnO_x/TiO₂-TaON films in contact with aqueous 0.1 M Na₂SO₄ (pH = 6) under chopped visible light irradiation (1 sun, $\lambda > 400$ nm). MnO_x was electrodeposited (A) in dark and (B) under continuous visible light irradiation (1 sun, $\lambda > 400$ nm) for defined *t*_{dep} and under conditions defined in Fig. S1.

Figure S3. Photooxidation current densities at different potentials derived from voltammograms (scan rate, $v = 0.025 \text{ V s}^{-1}$) obtained under chopped visible light irradiation for (i) TiO₂-TaON and (ii-ix) MnO_x/TiO₂-TaON films prepared using different c_{Mn} in contact with aqueous 0.1 M Na₂SO₄ (pH = 6). MnO_x was electrodeposited for $t_{\text{dep}} = 1 \text{ min (A)}$ in dark and (B) under continuous visible light irradiation (1 sun, $\lambda > 400 \text{ nm}$) and other conditions as defined in Fig. S1.

Figure S4. Chronoamperograms obtained for water photooxidation at 1 V (*vs.* Ag|AgCl) by (i) TiO₂-TaON and (ii-v) MnO_x/TiO₂-TaON films in contact with aqueous 0.1 M Na₂SO₄ (pH = 6) under chopped visible light irradiation (1 sun, $\lambda > 400$ nm). MnO_x was electrodeposited for $t_{dep} = 1$ min (A) in dark and (B) under continuous visible light irradiation (1 sun, $\lambda > 400$ nm) using defined c_{Mn} and under conditions defined in Fig. S3.

Figure S5. Mn 2p, 3s and 3p core level spectra of the (A) MnO_x/FTO and (B) MnO_x/TiO_2 -TaON electrodes. MnO_x was electrodeposited (A) in dark at $J_{dep} = 250 \ \mu\text{A cm}^{-2}$ and (B) under continuous visible light irradiation (1 sun, $\lambda > 400 \text{ nm}$) at $E_{dep} = 0.7 \text{ V vs. Ag}|AgCl|KCl(sat.)$ for $t_{dep} = 1.33$ min and under other conditions defined in Fig. S1.

Signal	Binding energy / eV
Mn 2p (1)	642.43
Mn 2p (2)	654.20
Mn 3p	49.98
Mn 3s (1)	84.45
Mn 3s (2)	89.40
Mn 3s splitting	4.95
Mn 2p - O 1s	112.39

Table S1. Peak positions in the Mn 2p, 3s and 3p core level spectra for MnO_x/FTO . MnO_x waselectrodeposited under conditions defined in Fig. S5.

Figure S6. SEM images obtained for the MnO_x/FTO (A) and MnO_x/TiO₂-TaON films (B and C). MnO_x was electrodeposited over a bare FTO substrate at $E_{dep} = 0.7$ V (*vs.* Ag|AgCl) (A), and over TiO₂-TaON films at $E_{dep} = 0.0$ V (B) or at $E_{dep} = 0.9$ V (C) under conditions defined in the figure using aqueous 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) as a deposition solution.

Figure S7. Comparison of EDX spectra obtained for (i-x) MnO_x/TiO_2 -TaON, (xi) TiO_2-TaON and (xii) TaON films. MnO_x was electrodeposited over TiO_2-TaON films using an aqueous solution of 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at $E_{dep} = -0.2$ (d, i and j), 0.0 (c, g and h) or 0.7 V (*vs.* Ag|AgCl) (a and e) or at $J_{dep} = 250 \mu A \text{ cm}^{-2}$ (b and f) using defined t_{dep} in dark or under illumination (1 sun, $\lambda > 400 \text{ nm}$).

Figure S8. Nyquist plots at (A) 0.65 V and (B) 1.05 V *vs.* Ag|AgCl for TiO₂-TaON (i, *black*) and MnO_x/TiO₂-TaON (ii-v). EIS data were obtained under illumination (1 sun, $\lambda > 400$ nm) using aqueous 0.1 M Na₂SO₄ (pH = 6). Symbols show the experimental data, lines are guides to an eye. MnO_x was electrodeposited for 1 min over TiO₂-TaON films using an aqueous solution of 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at *E*_{dep} = 0.0 (*green, magenta*) or 0.7 V (*blue, red*) in dark (*magenta, blue*) or under illumination (1 sun, $\lambda > 400$ nm) (*green, red*).

Figure S9. Chronoamperograms obtained for MnO_x/TiO₂-TaON (*green, red* and *blue*), TiO₂-TaON (*black*) and TaON (*black* - broken lines) at 1 V *vs.* Ag|AgCl under continuous visible light irradiation (1 sun, $\lambda > 400$ nm) in contact with aqueous 0.1 M Na₂SO₄ (pH = 6). MnO_x was electrodeposited over TiO₂-TaON films using an aqueous solution of 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at $E_{dep} = -0.2$ (A), 0.0 (B) or 0.7 V *vs.* Ag|AgCl (C), or at $J_{dep} = 250 \ \mu\text{A cm}^{-2}$ (D) for the defined amount of time in dark or under illumination (1 sun, $\lambda > 400$ nm).

Figure S10. SEM images obtained for MnO_x/TiO_2 -TaON after 60 min of potentiostatic water photooxidation at 1.0 V (*vs.* Ag|AgCl) under continuous visible light irradiation (1 sun, $\lambda > 400$ nm) using aqueous 0.1 M Na₂SO₄ (pH = 6). Electrodeposition of MnO_x was carried out under conditions defined in figure using aqueous 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5).

Figure S11. Voltammograms ($v = 0.025 \text{ V s}^{-1}$) obtained under chopped visible light irradiation (1 sun, $\lambda > 400 \text{ nm}$) for MnO_x/TiO₂-TaON (*red*) and TiO₂-TaON (*black*) in contact with (A) 0.1 M Na₂SO₄ solution, pH = 6.0, (B) 0.1 M phosphate buffer, pH = 7.0, (C) 0.1 M borate buffer, pH = 9.2 and (D) 0.1 M Na₂SO₄ solution + NaOH, pH 12. Note that the potentials are referred to the reversible hydrogen electrode (RHE), not Ag|AgCl. MnO_x was electrodeposited over TiO₂-TaON films using an aqueous solution of 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at $E_{dep} = 0.7 \text{ V} vs$. Ag|AgCl for 1 min under illumination (1 sun, $\lambda > 400 \text{ nm}$). Each voltammogram has been corrected for the corresponding dark current at 0.65 V vs. RHE to facilitate comparisons of the photocurrents.

Figure S12. Chronoamperograms obtained for MnO_x/TiO_2 -TaON films at 1.55 V *vs.* RHE under continuous visible light irradiation (1 sun, $\lambda > 400$ nm) in contact with 0.1 M Na₂SO₄ solution, pH = 6.0 (*black*), 0.1 M phosphate buffer, pH = 7.0 (*blue*), 0.1 M borate buffer, pH = 9.2 (*red*) and 0.1 M Na₂SO₄ + NaOH, pH 12 (*green*). MnO_x was electrodeposited over TiO₂-TaON films using an aqueous solution of 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at $E_{dep} = 0.7$ V *vs.* Ag|AgCl for 1 min under continuous illumination (1 sun, $\lambda > 400$ nm).

Figure S13. Voltammograms used for the calculation of IPCE were obtained at v = 0.005 V s⁻¹ under chopped monochromatic light irradiation with $\lambda = 410$ nm for (i) TiO₂-TaON (light intensity 5.75 mW cm⁻²) and (ii-v) MnO_x/TiO₂-TaON (light intensity 2.4 mW cm⁻²) in contact with aqueous 0.1 M Na₂SO₄ (pH = 6). MnO_x was electrodeposited over TiO₂-TaON films using an aqueous solution of 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at $E_{dep} = -0.2$ (ii), 0 (iii) or 0.7 V *vs.* Ag|AgCl (iv), or at $J_{dep} = 250 \mu A$ cm⁻² (v) for 1 min under illumination (1 sun, $\lambda > 400$ nm). Asterisks in top plot exemplify the data points used for calculation of the photocurrent density, which was further used for calculation of IPCE. Contribution of the reduction processes upon ceasing the irradiation observed for $E_{dep} = 0.70$ V might result in overestimation of the true water oxidation photocurrent densities. However, this effect is negligible for other samples used for IPCE measurements.

Figure S14. IPCE spectra obtained at (A) 0.05 V, (B) 0.25 V, (C) 0.45 V, (D) 0.65 V, (E) 0.85 V and (F) 1.05 V *vs*. Ag|AgCl for (i - iv) MnO_x/TiO₂-TaON and (v) TiO₂-TaON films in contact with aqueous solution of 0.1 M Na₂SO₄ (pH = 6) under irradiation. MnO_x was electrodeposited over TiO₂-TaON films using an aqueous solution of 0.01 M Mn(CH₃COO)₂ with 0.1 M Na₂SO₄ (pH = 5) at $E_{dep} = -0.2$ (i), 0.0 (ii) or 0.7 V *vs*. Ag|AgCl (iii), or at $J_{dep} = 250 \ \mu\text{A cm}^{-2}$ (iv) for 1 min under illumination (1 sun, $\lambda > 400$ nm).