Novel Copper(II)-Lanthanum(III) Metal Organic Framework

as Selective Catalyst for the Aerobic Oxidation of Benzylic

Hydrocarbons and Cycloalkenes.

P. Cancino,^{a,b} A. Vega,^{b,c} A. Santiago-Portillo,^d S. Navalon,^d M. Alvaro,^d P. Aguirre,^a E.Spodine,^{*a,b}, H. García^{*d}

Supplementary Material

^a Facultad de Ciencias Químicas y Farmacéuticas, U. de Chile, Sergio Livingstone P.1007, Santiago, Chile.

^b CEDENNA, Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile.

^c Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.

^d Instituto Universitario de Tecnología Química and Departamento de Química, Universidad Politécnica de Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain

Figure S1. Molecular structure diagram for the coordination sphere of copper (II). Displacement ellipsoids drawn at the 50% level of probability, while hydrogen atoms are drawn as spheres of arbitrary radii. Symmetry Equivalents: (i): -x,-y,1-z; (ii):1-x, 1-y, 2-z; (iii): x, 1+y, z; (iv): 1+x, 1+y, z; (v): 1-x, 2-y, 2-z; (vi): x-1, y, z; (vii): -x, 1-y, 1-z; (viii): x, y-1, z; (ix): x-1, y-1, z; (x): x+1, y, z. Legend: Cyan: Cu; green: La; yellow: S; red: O; grey: C; light blue: N; white: H.

Figure S2. Molecular structure diagram for the coordination sphere of lanthanum (III) (La1). Displacement ellipsoids drawn at the 50% level of probability, while hydrogen atoms are drawn as spheres of arbitrary radii. Symmetry Equivalents: (i): -x,-y,1-z; (ii):1-x, 1-y, 2-z; (iii): x, 1+y, z; (iv): 1+x, 1+y, z; (v): 1-x, 2-y, 2-z; (vi): x-1, y, z; (vii): -x, 1-y, 1-z; (viii): x, y-1, z; (ix): x-1, y-1, z; (x): x+1, y, z. Legend: Cyan: Cu; green: La; yellow: S; red: O; grey: C; light blue: N; white: H.

Figure S3. Molecular structure diagram for the coordination sphere of lanthanum (III) (La2). Displacement ellipsoids drawn at the 50% level of probability, while hydrogen atoms are drawn as spheres of arbitrary radii. Symmetry Equivalents: (i): -x,-y,1-z; (ii):1-x, 1-y, 2-z; (iii): x, 1+y, z; (iv): 1+x, 1+y, z; (v): 1-x, 2-y, 2-z; (vi): x-1, y, z; (vii): -x, 1-y, 1-z; (viii): x, y-1, z; (ix): x-1, y-1, z; (x): x+1, y, z. Legend: Cyan: Cu; green: La; yellow: S; red: O; grey: C; light blue: N; white: H.

Figure S4. Time selectivity plot for minor products observed during the aerobic oxidation of indane using CuLa-MOF as catalyst during four consecutive uses. Reaction conditions: Catalyst (20 mg, 0.5 mol % Cu), substrate (20 mmol), 120 °C, O₂ atmosphere. Legend:1,3-indanediol ($\mathbf{\nabla}$), 3-hydroxy-indanone (\Box), 1,3-indanedione ($\mathbf{\blacksquare}$).

Figure S5. Time selectivity plot for the aerobic oxidation of indane using the heterogeneous CuLa-MOF (\Box) or different amounts of Cu(OAc)₂ corresponding to leaching found after using the catalyst (1.5 • , 0.8 \circ or 0.3 • wt%). Note: Selectivity includes hydroperoxide/-ol/-one. Reaction conditions: Catalyst (20 mg, 0.5 mol % Cu), substrate (20 mmol), 120 °C, O₂ atmosphere.

Figure S6. Productivity test for the aerobic oxidation of indane under aerobic conditions using CuLa-MOF as catalyst. Reaction conditions: catalyst (2 mg, 0.0011 mmol), substrate (40 mL, 325 mmol), 120 °C, O₂ atmosphere (1 atm).

Figure S7. Influence of the reaction atmosphere on the time-conversion plot during the indane reaction in the presence of CuLaPDC. Reaction conditions: Catalyst (20 mg), indane (20 mmol), 120 °C, atmosphere as indicated (1 atm). Legend: O_2 (**•**), air (Δ), Ar for 24 h and then O_2 (**•**).

Figure S8. Time conversion plot for the aerobic oxidation of indane using CuLa-MOF in the absence (•) or in the presence of quenchers including benzoic acid (•), DMF (\blacktriangle) or TEMPO (Δ) added at ~ 40 % conversion. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, benzoic acid or DMF (20 mol % respect indane), atmosphere as indicated (1 atm).

Figure S9. Time conversion (**•**) and selectivity plots for the aerobic oxidation of *n*-butylbenzene using CuLa-MOF as catalyst. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O₂ atmosphere (1 atm). Legend: Selectivity to hydroperoxide ($\mathbf{\nabla}$) alcohol (**•**) and ketone (Δ) at benzylic positions and benzoic acid (\circ).

Figure S10. Time conversion (**•**) and selectivity plots for the aerobic oxidation of isobutylbenzene using CuLa-MOF as catalyst. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O₂ atmosphere (1 atm). Legend: Selectivity to hydroperoxide (Δ) and ketone (\circ) at benzylic position and benzoic acid (\Box).

Figure S11. Time conversion (**•**) and selectivity plots for the aerobic oxidation of cumene using CuLa-MOF as catalyst. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O₂ atmosphere (1 atm). Legend: Selectivity to hydroperoxide (Δ) and ketone (\circ) at benzylic position and α -methylstyrene (\Box).

Figure S12. Time conversion (**•**) and selectivity plots for the aerobic oxidation of secbutylbenzene using CuLa-MOF as catalyst. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O₂ atmosphere (1 atm). Legend: Selectivity to hydroperoxide (Δ), alcohol ($\mathbf{\nabla}$) and ketone (**•**) at benzylic position and to acetophenone (\Box).

Figure S13. Comparison of the time conversion plot for the aerobic oxidation of cumene (\circ), indane (\blacksquare), secbutylbenzene (\blacktriangle), *n*-butylbenzene (\square) and isobutylbenzene (\bullet) using CuLa-MOF as catalyst. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O₂ atmosphere (1 atm).

Figure S14. Time conversion (**■**) and selectivity plots for the aerobic oxidation of cyclooctene using CuLa-MOF as catalyst and under oxygen pressure. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O_2 atmosphere (5 atm). Legend: Selectivity to hydroperoxide (Δ) and epoxide (\circ).

Figure S15. Time conversion (**■**) and selectivity plots for the aerobic oxidation of cycloheptene using CuLa-MOF as catalyst and under oxygen pressure. Reaction conditions: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O₂ atmosphere (5 atm). Legend: Selectivity to epoxide (\circ), alcohol (Δ) and ketone (\Box). Note: traces of hydroperoxide were detected.

Figure S16. Time conversion (**■**) and selectivity plots for the aerobic oxidation of cyclohexene using CuLa-MOF as catalyst and under oxygen pressure. Reaction conditi: Catalyst (20 mg, 0.05 mol %), substrate (20 mmol), 120 °C, O_2 atmosphere (5 atm). Legend: Selectivity to epoxide (Δ), alcohol (\circ) and ketone (\Box). Note: traces of hydroperoxide were detected.