Supplementary information

Development of a catalytically green route from diverse lignocellulosic biomasses to high-density cycloalkanes for jet fuels

Xuesong Zhang, Hanwu Lei,* Lei Zhu, Moriko Qian, J. C. Chan, Xiaolu Zhu, Yupeng Liu, Gayatri Yadavalli, Di Yan, Lu Wang, Quan Bu, Yi Wei, Joan Wu, and Shulin Chen

Characteristics	Hybrid poplar	Loblolly pine	Douglas fir
	sawdust	sawdust	sawdust pellets
Proximate analysis (wt%)			
Moisture	5.34	5.50	4.82
Volatile matter	75.87	78.23	76.08
Fixed carbon	17.36	15.74	18.89
Ash	1.43	0.53	0.21
Elemental analysis (wt%)			
Carbon	50.20	49.30	47.90
Hydrogen	6.02	6.02	6.55
Nitrogen	0.59	0.06	0.08
Oxygen ^a	43.19	44.62	45.57
^a by difference			

Table S1 Proximate and elemental analyses of diverse lignocellulosic biomasses

	Catalytic	Catalyst to	Yield (wt.%)			
Run ^a Ter	Temperature		Organics	Gas	Char	Coke
	(°C)	biomass fatio				
H-1	300	0.15	18.65	40.54	22.59	2.68
H-2	300	0.35	17.38	42.87	22.22	3.23
H-3	450	0.15	15.65	48.84	21.52	1.27
H-4	450	0.35	14.44	50.34	22.88	2.25
H-5	269	0.25	19.21	42.22	22.59	3.57
H-6	375	0.25	17.20	44.82	22.54	2.00
H-7	375	0.25	17.43	45.01	23.17	2.03
H-8	375	0.25	17.53	45.21	22.34	2.12
H-9	375	0.25	17.11	44.76	22.56	1.98
H-10	375	0.25	17.33	44.88	21.89	2.23
H-11	481	0.25	15.46	48.74	21.98	1.54
H-12	375	0.11	18.23	43.21	22.20	1.89
H-13	375	0.39	16.21	46.02	22.91	2.43
H-14	500	0.25	14.87	50.05	23.01	1.27
H-15	375	0.50	15.89	47.23	22.63	2.98
H-16	-	-	22.07	39.20	22.52	-

Table S2 Experimental design and product yield distribution of hybrid poplar

^a H-1 to H-13 was conducted based on central composite design; H-14 and H-15 were added as the controls; H-16 is the control in the absence of catalyst.

	Catalytic	Catalyst to	Yield (wt.%)			
Run ^a	Temperature		Organics	Gas	Char	Coke
	(°C)	biomass ratio				
L-1	300	0.15	17.78	41.38	20.20	2.25
L-2	300	0.35	16.99	44.02	20.11	3.99
L-3	450	0.15	15.01	47.54	20.10	1.18
L-4	450	0.35	13.56	52.02	19.98	1.93
L-5	269	0.25	18.23	42.22	19.65	3.23
L-6	375	0.25	16.67	46.23	19.88	2.44
L-7	375	0.25	16.74	47.02	20.22	2.45
L-8	375	0.25	16.23	46.37	20.34	2.66
L-9	375	0.25	17.05	46.43	19.55	2.22
L-10	375	0.25	16.22	46.82	19.43	2.54
L-11	481	0.25	14.23	50.12	20.22	1.54
L-12	375	0.11	17.43	44.45	20.45	1.74
L-13	375	0.39	16.00	47.82	20.24	2.72
L-14	500	0.25	13.89	52.13	20.53	1.25
L-15	375	0.50	16.01	49.45	19.79	3.04
L-16	-	-	21.02	40.98	19.34	-

Table S3 Experimental design and product yield distribution of loblolly pine

^a L-1 to L-13 was conducted based on central composite design; L-14 and L-15 were added as the controls; L-16 is the control in the absence of catalyst.

	Catalytic	Catalyst to	Yield (wt.%)			
Run ^a	Temperature	biomass ratio	Organics	Gas	Char	Coke
	(°C)	biomass ratio				
D-1	300	0.15	17.88	39.45	22.25	3.03
D-2	300	0.35	17.11	40.25	21.50	3.98
D-3	450	0.15	15.48	46.20	21.85	2.02
D-4	450	0.35	13.88	49.66	21.63	2.65
D-5	269	0.25	18.67	40.20	21.78	4.02
D-6	375	0.25	16.88	44.02	22.54	2.82
D-7	375	0.25	16.77	44.34	22.78	2.94
D-8	375	0.25	16.96	44.21	22.07	2.78
D-9	375	0.25	16.54	44.02	21.74	3.02
D-10	375	0.25	16.82	44.01	21.56	2.98
D- 11	481	0.25	14.65	47.89	22.21	2.44
D-12	375	0.11	18.00	42.88	21.85	2.71
D-13	375	0.39	15.99	44.23	21.90	3.55
D-14	500	0.25	14.02	49.11	22.05	1.95
D-15	375	0.50	16.32	45.56	22.12	3.90
D-16	-	-	20.88	38.18	21.25	-

Table S4 Experimental design and product yield distribution of Douglas fir

^a D-1 to D-13 was conducted based on central composite design; D-14 and D-15 were added as the controls; D-16 is the control in the absence of catalyst.

Table S5 Proportion of cellulose, hemicellulose and lignin (as% dry weight) in various biomass

 species

	Hybrid poplar	Loblolly pine sawdust	Douglas fir	
	sawdust		sawdust pellets	
Cellulose	49	42	44	
Hemicellulose	22	21	21	
Lignin	23	26	32	

Fig. S1 The schematic diagram of the microwave-assisted pyrolysis system integrated with catalysis process

Fig. S2 The schematic overview of the hydrogenation process set-up

Fig. S3 The organic compositon from hybrid poplar as a function of catalytic temperature at the same biomass to catalyst ratio (0.25).

Fig. S4 The organic compositon from loblolly pine as a function of catalytic temperature at the same biomass to catalyst ratio (0.25).

Fig. S5 The organic compositon from Douglas fir as a function of catalytic temperature at the same biomass to catalyst ratio (0.25).