Supplementary file

Preparation of CO and NO

The CO was prepared by disproportionation of formic acid with conc. H_2SO_4 and NO by reaction of sodium nitrite with conc. H_2SO_4 and FeSO_4 in a special glass apparatus. Gases generated are passed through saturated solution of KOH separately as by products like CO₂ and NO₂ generated, gets absorbed in the alkali solution and dried over molecular sieves as well as calcium chloride to remove moisture. Purity of CO and NO were checked on gas chromatograph and found to be pure. The Ar and O₂ gases used were from pure commercial cylinders.

XRD

Supplementary figure 1. XRD pattern of pristine Co_3O_4 and higher dopant (Ag_{0.5}Co_{2.5}O₄ biphasic).

XRD indicates monophasic nature and no extra reflection of Co or CoO is seen in pristine Co_3O_4 , whereas higher dopant $Ag_{0.5}Co_{2.5}O_4$ resulted in biphasic composition. The XRD pattern showed 111 (~18.9°), 220 (~31.3~°), 311 (~36.8°), 222 (~38.56°), 400 (~4.8°), 511 (~59.3°), 440 (~65.2°) and 533 (~78.5°) which indicate cubic phase of cobalt oxide spinel. Two theta values are matching well with JCPDS card no. 42-1467. Broadening indicates poor crystalline nature of the prepared catalysts.

Supplementary figure 2. TEM image of $Ag_{0.2}Co_{2.8}O_4$ also shows particles are of 10-25 nm size.

NO-CO conversion

Nitric oxide gets reduced over catalyst surface to form N_2 and N_2O by CO. Whereas CO gets oxidized over the surface to form CO₂. Efficiency of catalyst for this reaction depends on less percentage formation of N_2O . Conversion of N_2O was monitored on porapak Q column. For substituted catalyst low level of N_2O formation is observed which is represented in **Table 1**. It was observed that CO conversion was in line with NO conversion and no decrease in activity was observed (**Supplementary figure 3**).

Supplementary table 1. Percentage NO conversion,

Temperature in ⁰C	Ag _{0.3} Co _{2.9} O ₄			$Ag_{0.2}Co_{2.8}O_4$			Ag _{0.1} Co _{2.9} O ₄			
	%NO	%N2O	%N2	%NO	%N2O	%N2	%NO	%N2 0	%N2	
75	12.88	Very low	~100		-	-	-		-	Ę
100	47.48	Very low	~100	21.31	22.56	77.44	7.1		-	/ersic
120	99	0	100	11.87	11.87	88.13	17.9		-	con
125	100	0	100	5.56	4.99	95.01	22	27.3	72.7	% CO
150	100	0	100	4.7	0	100	56.54	12.6	87.4	
175	100	0	100	100	0	100	80.98	4.92	95.08	1
200	100	0	100	100	0	100	100	0	100	1

Table 1. Percentage NO conversion, percentage N_2O and N_2 selectivity for NO-CO redox reaction.

Supplementary figure 3. CO conversion

Analysis of NO

N₂ and N₂O

Percentage conversion of NO was observed on molecular sieve 13x column. This GC column cannot detect the formation of N_2O , so Porapak Q was used to determine the N_2O formation. Peak area for N_2O was calibrated with calibrated mixture using 0.5 ml injector volume for calibrated mixture of 1:1 N_2O and CO_2 .

Total % of NO conversion = % of N_2O formation + % of N_2 formation

Percentage conversion of NO was analysed on molecular sieve 13x column and percentage formation of N_2O on porapak Q column.

% N₂ selectivity was found out as follows.

% N₂ selectivity = 100 - % N₂O formation.

Stability test.

Catalyst reproducibility was checked trice without employing any activation or regeneration procedure after the first run. Test showed NO conversion was reproducible over the used catalyst (**supplementary figure 4**). Catatalyst stability at 150 °C with different reaction condition is studied. Same feed gas composition of 5% NO and 5% CO in Ar at 5000 ml h⁻¹ was employed in determining catalyst stability in moisture and O₂ (**supplementary figure 5**). It was observed for NO-CO redox reaction over Ag_{0.2}Co_{2.8}O₄ that there was increase in activity. Moisture tolerance study indicates there was marginal decrease in initial activity at low levels (2.5%) moisture. Introductions of 2.5% O₂ has visible decrease in activity which is reflective of competitive oxidation of catalyst surface by O₂ rather than NO.

Supplementary figure 4. Catalyst reproducibility test for Ag_{0.3}Co_{2.7}O₄.

Supplementary figure 5. Catalyst activity in different reaction condition for $Ag_{0.2}Co_{2.8}O_4$.

Supplementary figure 6. N_2O selectivity for the catalyst stability test under various test conditions.

 N_2O selectivity for stability tests under various reaction conditions is shown in **Supplementary figure 6.**Oxygen has increased the formation of N_2O as oxygen competes for re-oxidation of catalyst surface with NO. It lowers the dissociative adsorption of NO over the catalyst surface to form N_2 . Moisture however has no effect on N_2O formation possibly water molecules only block the active catalyst sites rather than actively participation in NO-CO redox reaction. There was no N_2O observed during 10 h of reaction stability test in absence of oxygen.

EDS analysis of Ag_{0.3}Co_{2.7}O₄ and Ag_{0.5}Co_{2.5}O₄

Supplementary figure 7. EDS of A) Ag_{0.3}Co_{2.7}O₄ and B) Ag_{0.5}Co_{2.5}O₄ biphasic.

EDS shows the presence of silver in the substituted catalysts for monophasic catalyst $Ag_{0.3}Co_{2.7}O_4$ and for biphasic catalyst $Ag_{0.5}Co_{2.5}O_4$ in **Supplementary figure 7 A&B**. Thus, XRD and EDS studies indicates that silver is incorporated in lower concentration cobalt oxide spinels but higher concentration of Ag results in biphasic catalyst confirmed by XRD.

Repeat XRD analysis of the catalysts.

Supplementary figure 8. XRD of doped catalysts (repeated).

Supplementary figure 9. XRD pattern showing the difference between 12% doped and supported Ag for Co_3O_4 .

XRD pattern for three silver substituted catalysts was repeated again which shows better signal to noise ratio. Repeat analysis of diffraction pattern did not show any extra reflections (**Supplementary figure 8**). Also there is increase in the lattice parameter with increase in silver substitution and shown in Table s below. In addition, XRD pattern of supported catalyst for 12% Ag on Co_3O_4 is recorded which shows reflections of Ag₂O (**Supplementary Figure 9**). Thus it can be concluded that in doped catalysts Ag is present in the lattice but its position in lattice needs detail investigation.

Supplementary table 2. Lattice parameters

Catalyst	Lattice parameter (Å)
Ag _{0.1} Co _{2.9} O ₄	8.0768
Ag _{0.2} Co _{2.8} O ₄	8.0811
Ag _{0.3} Co _{2.7} O ₄	8.0895