Supporting Information

Horseradish Peroxidase (HRP): A Tool for Catalyzing the Formation of Novel Bicoumarins

Xiao-Xv Gao,^a Shan-Shan Huang,^a Pei-Pei Dong,^a Chao Wang,^a,* Jie Hou,^b Xiao-Kui Huo,^a Bao-Jing Zhang,^a Tong-Hui Ma,^b and Xiao-Chi Ma,^{a,c,*}

- ^a College of Pharmacy, Research Institute of Integrated Traditional and Western Medicine, Dalian Medical University, Dalian 116044, P. R. China
 Tel: +86-411-86110419. Fax: +86-411-86110408. E-mail: wach_edu@dlmedu.edu.cn *(C. Wang); maxc1978@163.com *(X.-C. Ma)
- ^b College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P. R. China
- ^c State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China

1. Structures elucidation of transformed products

Compound **1a** was obtained as a yellow amorphous powder. The molecular formula $C_{22}H_{18}O_{10}$ was determined by HRESIMS *m/z* 443.0969 (calcd for 443.0978 [M+H]+). Four aromatic proton signals $\delta_{\rm H}$ 8.30 (2H, s), 7.12 (2H, s), two methoxyl signals $\delta_{\rm H}$ 3.87, 3.85 (each 3H, s) and two phenolic hydroxyls $\delta_{\rm H}$ 10.02 (2H, brs) were observed in the ¹H NMR spectrum of **1a** (Table 1). The ¹³C NMR spectrum displayed 20 carbon signals, including two singlet methoxyls (Table 2). The spectroscopic data indicated that **1a** was a dimer of **1**. The HSQC and HMBC experiments showed correlations of carbons and protons, which could confirmed the coumarin units. Compared with **1**, the absence of H-3 and singlet of H-4 suggested that **1a** was bicoumarin with connection of C-3 and C-3'. Therefore, on the basis of the natural product isolated from *Chimonanthus praecox*,¹ compound **1a** was identified as 6,8,6',8'-tetramethoxyl-7,7'-dihydroxy-3,3'-bicoumarin. Compound **1b** gave the molecular formula $C_{33}H_{26}O_{15}$ from HRESIMS. Combined with NMR data, **1b** was deduced to be a trimer. The ¹H NMR spectrum revealed the signals of two phenolic hydroxyls, H-4, H-5, H-4', H-5', H-4'', and H-5'', which were assigned by long range correlations observed in the HMBC spectrum. Based on product **1a**, **1b** was determined to be a trimer of **1a** and **1** connected by 7'-OH and C-3''.

Compounds **2a** and **2b** possessed the same molecular formula $C_{18}H_{10}O_6$ established by HRESIMS and NMR data. They both were dimer of substrate **2**. The difference was connected positions for coumarin units. The ¹H NMR and ¹³C NMR data of **2a** suggested a symmetrical structure, which suggesting that **2a** was dimer of two coumarin units connected with the same position. The ¹H NMR displayed the signals of H-3 (3') $\delta_{\rm H}$ 6.34 (2H, d, J = 9.5 Hz), H-4 (4') $\delta_{\rm H}$ 7.37 (2H, d, J = 9.5 Hz), H-5 (5') $\delta_{\rm H}$ 7.26 (s), H-8 (8') $\delta_{\rm H}$ 7.25 (s) and two phenolic hydroxyls $\delta_{\rm H}$ 9.72 (s), which were further confirmed by the HMBC experiment. The absence of H-8 (8') revealed the connection of C-8 and C-8'. The ¹H NMR spectrum of **2b** revealed the signals of H-3 (3'), H-4 (4'), and an aromatic ABX system $\delta_{\rm H}$ 7.11 (d, J = 3.0 Hz), 7.39 (d, J = 8.5 Hz), 7.25 (dd, J = 8.5, 3.0 Hz), an aromatic AB system $\delta_{\rm H}$ 7.29 (d, J = 9.0 Hz), 7.24 (d, J = 9.0 Hz) and one phenolic hydroxyl $\delta_{\rm H}$ 9.99 (s). Compared with 6-hydroxycoumarin (**2**), **2b** was deduced to be dimer with the connection of C-5 and phenolic hydroxyl. The HMBC correlation of H-7 and C-5 confirmed the linkage "C-6-O-C-5". From the above observations, transformed products of coumarin **2** were established as 6,6'-dihydroxy-7,7'-bicoumarin (**2a**), 6-hydroxy-5-(6-coumarinyloxy)coumarin (**2b**) respectively.

On the basis of physical and spectroscopic data, compounds **3a** and **3b** were both deduced to be dimeric structures of substrate (**3**). The structure of **3** displayed H-3, an ABX spin system (H-5, H-7, H-8), a 4-methyl and 6-OH. Analysis of the ¹H NMR spectrum of **3a** showed the signals of H-3 (3'), an aromatic AB spin system [$\delta_{\rm H}$ 7.20 (d, J = 8.5 Hz), 7.31 (d, J = 8.5 Hz)], two isolated aromatic protons $\delta_{\rm H}$ 7.13 (s), 7.14 (s), and two phenolic hydroxyls $\delta_{\rm H}$ 9.70 (s), 9.47 (s). The absence of H-7 and H-5' indicated the C-7-C-5' linkage between two coumarin unites. The NMR data were accurately assigned on the basis

of HSQC and HMBC spectra. Compound **3b**, similar to **3a**, also consisted of two 6-hydroxy-4methylcoumarin units. Compared with substrate, the ¹H NMR spectrum revealed the absence of H-5' and one phenolic hydroxyl group. Therefore, combined with HRESIMS, **3b** was deduced to be a dimericcoumarin with linkage of C-5'-O-C-6. Both coumarin units were established by HSQC and HMBC experiments. Accordingly, products **3a** and **3b** were elucidated as 6,6'-dihydroxy- 4,4'-dimethyl-7,5'bicoumarin, 6-hydroxy-4-methyl-5-(4-methyl-6-coumarinyloxy) oumarin, respectively.

Compound **4a**, a yellow amorphous powder, had the molecular formula $C_{18}H_{10}O_6$ on the basis of HRESIMS and NMR data, which deduced **4a** as a dimer of 7-hydroxycoumarin. The ¹H NMR displayed the proton signals of coumarin units, except for H-3' and H-8. Combined with 2D-NMR, **4a** was proposed to be 7,7'-dihydroxy-3,8'-bicoumarin. The structure of **4a** was further confirmed by comparison with natural product obtained from *Gnidia socotrana*.²

Products **5a** and **5b** were assigned the same molecular formula $C_{20}H_{14}O_6$ by HRESIMS. 14 protons were observed from the ¹H NMR spectra of **5a** and **5b** respectively, including all of the phenolic hydroxyls. Thus, **5a** and **5b** were both bicoumarins derived from 7-hydroxy-4-methylcoumarin (**5**). From their physical data upon comparisons with values reported in the literature, **5a** and **5b** were identified as 7,7'-dihydroxy-4,4'-dimethyl-3,8'-bicoumarin, 7,7'-dihydroxy-4,4'-dimethyl-3,6'-bicoumarin, respectively.

No.	1a	1b	2a	2b	3a	3b	4a	5a	5b
3			6.34 d (9.5)	6.47 d (9.5)	6.24 s	6.42 s	6.23 d (9.5)		
4	8.30 s	8.35 s	7.37 d (9.5)	7.98 d (9.5)			8.00d (9.5)		
5	7.12 s	7.16 s	7.26 s	7.11 d (3.0)	7.14 s	7.21 d (3.0)	7.58 d (8.5)	7.68 d (8.5)	7.69 d (8.0)
6							6.95 d (8.5)	6.846 dd	6.87 dd
								(8.5, 2.0)	(8.0, 2.5)
7				7.25 dd		7.02 dd			
				(8.5, 3.0)		(9.0, 3.0)			
8			7.25 s	7.39 d (8.5)	7.13 s	7.34 d (9.0)		6.76 d (2.0)	6.79 d (2.5)
3'			6.34 d (9.5)	6.44 d (9.5)	6.40 s	6.32 s		6.17 s	6.15 s
4'	8.30 s	8.44 s	7.37 d (9.5)	7.89 d (9.5)			7.97 s		
5'	7.12 s	7.40 s	7.26 s				7.59 d (8.5)	7.53 s	7.70 d (8.5)
6'							6.84 dd (8.5, 2.5)	6.85 s	6.98 d (8.5)
7'				7.29 d (9.0)	7.20 d (8.5)	7.24 d (8.5)			
8'			7.25 s	7.24 d (9.0)	7.31 d (8.5)	7.30 d (9.0)	6.81 d (2.5)		
4"		7.11 s							
5"		6.93 s							
^a The assignments of substituents were list in Characters of transformed products section.									

Table S1 ¹H NMR spectroscopic data of compounds (500 MHz, DMSO- d_6 ; δ_H in ppm, J in Hz).^a

Table 52 ¹³ C NMK spectroscopic data of compounds (125 MHZ, DMSO- a_6 , a_C in ppm). ^a								
No.	1a	1b	2a	2b	3 a	3b	4a	5a
2	159.3	159.1	159.8	159.8	159.4	159.6	160.1	159.1
3	110.2	109.5	116.2	116.80	116.2	115.0	111.237	112.0
4	143.4	144.1	117.1	143.7	153.8	152.5	144.77	151.0
5	104.7	104.8	119.9	112.7	109.2	110.3	129.7	126.1
6	145.9	146.1	151.4	154.2	152.0	153.6	112.8	113.1
7	144.4	144.8	117.5	119.8	129.8	118.6	159.21ª	160.0
8	134.5	134.5	142.3	117.6	119.3	117.6	110.2	102.0
9	142.5	138.3	147.3	148.7	145.9	148.0	153.2	153.8
10	117.4	121.3	118.6	119.3	119.0	120.4	111.194	110.1
2'	159.3	158.6	159.8	159.6	160.0	159.4	159.16 ^a	161.1
3'	110.2	109.9	116.2	116.77	114.5	116.2	114.9	109.50
4'	143.4	142.7	117.1	137.9	152.5	151.8	144.81	154.2
5'	104.7	105.8	119.9	136.1	120.9	146.6	129.2	127.0
6'	145.9	148.8	151.4	146.0	151.7	137.2	113.3	112.5
7'	144.4	142.3	117.5	121.2	119.3	114.2	161.4	158.9
8'	134.5	139.8	142.3	113.8	117.2	120.5	102.0	113.9
9'	142.5	141.2	147.3	146.8	147.0	146.7	155.2	152.6
10'	117.4	116.6	118.6	114.1	119.8	114.9	111.5	112.1
2"		155.9						
3"		139.6						
4"		119.3						
5"		103.6						
6"		146.0						
7"		141.8						
8"		134.7						
9"		139.0						
10"		116.8						
^a Assignments are interchangeable within column.								

E-LL CO BC ND (D (107) (11 DMCO 1

References

1 L.J. Shi, S. X. Yang, J. L. Bi, G. F. Yin and Y. H. Wang, Nat. Prod. Res. Dev., 2012, 24, 1335. 2 K. Franke, A. Porzel and J. Schmidt, Phytochemistry, 2002, 61, 873.

Characterization of transformed products

6,8,6',8'-tetramethoxyl-7,7'-dihydroxy-3,3'-bicoumarin (1a): Yellow amorphous powder; ¹H NMR (DMSO- d_6 , 500 MHz) see Table S1 and δ_H 3.85 (6H, s, 6-OCH₃, 6'-OCH₃), 3.87(6H, s, 8-OCH₃, 8'-OCH₃), 10.02 (2H, s, 10-OH, 10'-OH); ¹³C NMR (DMSO- d_6 , 125 MHz) see Table S2 and δ_C 56.2 (6-OCH₃, 6'-OCH₃), 60.8 (8-OCH₃, 8'-OCH₃); HRESIMS *m/z* 443.0969 (calcd for 443.0978, C₂₂H₁₉O₁₀ $[M+H]^{+}).$

6,8,6',8'-tetramethoxyl-7-hydroxy-7'-O-(6,8-dimethoxyl-7-hydroxy-3-coumarinyl)-3,3'-bicoumarin

(**1b**): Yellow amorphous powder; ¹H NMR (DMSO- d_6 , 500 MHz) see Table S1 and δ_H 3.74 (3H, s, 6-OCH₃), 3.86 (3H, s, 8-OCH₃), 3.84 (3H, s, 6'-OCH₃), 3.93 (3H, s, 8'-OCH₃), 3.87 (3H, s, 6"-OCH₃), 3.89 (3H, s, 8"-OCH₃); ¹³C NMR (DMSO- d_6 , 125 MHz) see Table S2 and δ_C 44.1 (6-OCH₃), 56.2 (8-OCH₃), 55.9 (6'-OCH₃), 61.6 (8'-OCH₃), 56.6 (6"-OCH₃), 60.7 (8"-OCH₃); HRESIMS *m*/*z* 663.1340 (calcd for 663.1350, C₃₃H₂₇O₁₅ [M+H]⁺).

6,6'-dihydroxy-7,7'-bicoumarin (2a): Yellow amorphous powder; ¹H NMR (DMSO- d_6 , 500 MHz) see Table S1 and $\delta_{\rm H}$ 9.72 (2H, s, 6-OH, 6'-OH); ¹³C NMR (DMSO- d_6 , 125 MHz) see TableS2; HRESIMS m/z 323.0546 (calcd for 323.0556, C₁₈H₁₁O₁₅ [M+H]⁺).

6-hydroxy-5-(6-coumarinyloxy)-coumarin (2b): Yellow amorphous powder; ¹H NMR (DMSO- d_6 , 500 MHz) see Table S1 and $\delta_{\rm H}$ 9.99 (1H, s, 6'-OH); ¹³C NMR (DMSO- d_6 , 125 MHz) see Table S2; HRESIMS m/z 323.0546 (calcd for 323.0556, C₁₈H₁₁O₁₅ [M+H]⁺).

6,6'-dihydroxy-4,4'-dimethyl-7,5'-bicoumarin (**3a**): Yellow amorphous powder; ¹H NMR (DMSO- d_6 , 500 MHz) see Table S1 and $\delta_{\rm H}$ 1.80 (3H, s, 4-Me), 2.42 (3H, s, 4'-Me),9.70 (6-OH), 9.47 (6'-OH); ¹³C NMR (DMSO- d_6 , 125 MHz) see Table S2 and $\delta_{\rm C}$ 22.2 (4-Me), 18.0 (4'-Me); HRESIMS *m/z* 351.0858 (calcd for 351.0858, C₂₀H₁₅O₆ [M+H]⁺).

6-hydroxy-4-methyl-5-(4-methyl-6-coumarinyloxy)coumarin (**3b**): Yellow amorphous powder; ¹H NMR (DMSO-*d*₆, 500 MHz) see Table S1 and $\delta_{\rm H}$ 2.36 (3H, s, 4-Me), 2.40 (3H, s, 4'-Me), 9.95 (brs, 6'-OH); ¹³C NMR (DMSO-*d*₆, 125 MHz) see Table S2 and $\delta_{\rm C}$ 18.0 (4-Me), 22.3 (4'-Me); HRESIMS *m/z* 373.0677 (calcd for 373.0688, C₂₀H₁₄NaO₆ [M+Na]⁺).

7,7'-dihydroxy-3,8'-bicoumarin (**4a**): Yellow amorphous powder; ¹H NMR (DMSO-*d*₆, 500 MHz) see Table S1 and $\delta_{\rm H}$ 10.65 (1H, s, 7'-OH), 10.63 (1H, s, 7-OH); ¹³C NMR (DMSO-*d*₆, 125 MHz) see Table S2; HRESIMS *m/z* 345.0363 (calcd for 345.0375, C₁₈H₁₁O₆ [M+H]⁺).

7,7'-dihydroxy-4,4'-dimethyl-3,8'-bicoumarin (**5a**): Yellow amorphous powder; ¹H NMR (DMSO-*d*₆, 500 MHz) see Table S1 and $\delta_{\rm H}$ 2.13 (3H, s, 4-CH₃), 2.42 (3H, s, 4'-CH₃), 10.59 (1H, s, 6-OH), 10.50 (1H, s, 6'-OH); ¹³C NMR (DMSO-*d*₆, 125 MHz) see Table S2 and $\delta_{\rm C}$ 16.0 (4-CH₃), 18.2 (4'-CH₃); HRESIMS *m/z* 351.0863 (calcd for 351.0869, C₂₀H₁₅O₆ [M+H]⁺).

7,7'-dihydroxy-4,4'-dimethyl-3,6'-bicoumarin (5b): Yellow amorphous powder; ¹H NMR (DMSO- d_6 , 500 MHz) see Table S1 and δ_H 2.16 (3H, s, 4-CH₃), 2.35 (3H, s, 4'-CH₃), 10.52 (1H, s, 6-OH), 10.53 (1H, s, 6'-OH); HRESIMS *m/z* 373.0679 (calcd for 373.0688, C₂₀H₁₄NaO₆ [M+ Na]⁺).

2. a-glucosidase inhibitory effects of the transformed products

Table S3 α -glucosidase inhibitory effects of coumarins.

Compound	IC ₅₀ (μM)	Compound	IC ₅₀ (μM)
1	>200	3b	111.6
1a	>200	4	116.11
1b	>200	4a	36.99
2	>200	5	151.09
2a	>200	5a	56.32

3. Kinetic analysis of the formation of bicoumarins in HRP catalyzed reactions

Fig. S1 Eadie–Hofstee plots of the kinetic analysis for various biocoumarins

4. Spectra of bicoumarins.

For compound 1a:

- SI-1. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **1a**
- SI-2. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound 1a
- SI-3. The HSQC spectrum of compound 1a
- SI-4. The HMBC spectrum of compound 1a
- SI-5. The NOESY spectrum of compound 1a
- SI-6. The HRESIMS spectrum of compound 1a

For compound **1b**:

- SI-7. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **1b**
- SI-8. The 13 C NMR (125 MHz, DMSO- d_6) spectrum of compound 1b
- SI-9. The HMQC spectrum of compound 1b
- SI-10. The HMBC spectrum of compound 1b
- SI-11. The HRESIMS spectrum of compound **1b**

For compound **2a**:

- SI-12. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **2a**
- SI-13. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound 2a
- SI-14. The HMQC spectrum of compound 2a
- SI-15. The HMBC spectrum of compound 2a
- SI-16. The HRESIMS spectrum of compound **2a**

For compound **2b**:

- SI-17. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **2b**
- SI-18. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **2b**
- SI-19. The HMQC spectrum of compound 2b
- SI-20. The HMBC spectrum of compound 2b
- SI-21. The HRESIMS spectrum of compound 2b

For compound **3a**:

- SI-22. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **3a**
- SI-23. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3a**
- SI-24. The HMQC spectrum of compound 3a
- SI-25. The HMBC spectrum of compound **3a**
- SI-26. The HRESIMS spectrum of compound 3a

For compound **3b**:

- SI-27. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **3b**
- SI-28. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3b**
- SI-29. The HMQC spectrum of compound 3b
- SI-30. The HMBC spectrum of compound **3b**
- SI-31. The HRESIMS spectrum of compound **3b**

For compound **4a**:

SI-32. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound 4a

SI-33. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound 4a

SI-34. The HMQC spectrum of compound 4a

SI-35. The HMBC spectrum of compound 4a

SI-36. The HRESIMS spectrum of compound 4a

For compound **5a**:

SI-37. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **5a** SI-38. The ¹³C NMR (125 MHz, DMSO- d_6) spectrum of compound **5a** SI-39. The HRESIMS spectrum of compound **5a**

For compound **5b**:

SI-40. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **5b**

SI-41. The ¹³C NMR (125 MHz, DMSO- d_6) spectrum of compound **5b**

SI-42. The HRESIMS spectrum of compound **5b**

SI-1. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **1a**

SI-4. The HMBC spectrum of compound 1a

SI-5. The NOESY spectrum of compound 1a

SI-6. The HRESIMS spectrum of compound 1a

SI-7. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **1b**

SI-8. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **1b**

f1 (ppm)

SI-10. The HMBC spectrum of compound 1b

SI-11. The HRESIMS spectrum of compound 1b

SI-12. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **2a**

SI-13. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **2a**

SI-14. The HMQC spectrum of compound 2a

SI-15. The HMBC spectrum of compound 2a

SI-16. The HRESIMS spectrum of compound 2a

SI-18. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **2b**

f1 (ppm)

SI-19. The HMQC spectrum of compound 2b

SI-20. The HMBC spectrum of compound $\mathbf{2b}$

SI-26. The HRESIMS spectrum of compound 3a

SI-25. The HMBC spectrum of compound 3a

SI-28. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **3b**

SI-27. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **3b**

SI-30. The HMBC spectrum of compound $\mathbf{3b}$

SI-29. The HMQC spectrum of compound 3b

SI-31. The HRESIMS spectrum of compound 3b

SI-34. The HMQC spectrum of compound 4a

SI-36. The HRESIMS spectrum of compound 4a

SI-35. The HMBC spectrum of compound 4a

SI-37. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **5a**

SI-40. The ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **5b**

SI-41. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound **5b**

SI-42. The HRESIMS spectrum of compound 5b

