Supplementary material

Effect of ordered meso-macroporous structure of Co/SiO₂ for an enhanced activity of CO hydrogenation to hydrocarbons

Hyun Mo Koo^a, Thanh Tran-Phu^a, Gi-Ra Yi^{a,*}, Chae-Ho Shin^b, Chan-Hwa Chung^a, Jong-Wook Bae^{a,**}

^aSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 440-746, Republic of Korea

^bDepartment of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea

Supplementary **Figure S1** represents the pore size distribution of the fresh (A) MMS support, (B) Co/MMS and (C) Co/SiO₂ catalysts.

Supplementary **Figure S2** represents the FT-IR spectra of the adsorbed CO molecules on the fresh Co/MMS and Co/SiO₂ catalysts.

Supplementary **Figure S3** represent the long-term catalytic stabilities of the Co/MMS and Co/SiO₂ catalysts at the following reaction conditions; T = 230 °C, P = 2.0 MPa, weight hourly space velocity (WHSV) of 12000 L/(kg_{cat}•h), and the feed syngas composition of H₂/CO/N₂ = 63.1/31.5/5.4 for 60 h, where N₂ was used as an internal standard gas by using 0.2 g catalyst with 2.0 g of inert material of SiC.

Supplementary Figure S4 represents the full range FT-IR spectra of the fresh and used (A)

Co/MMS and (B) Co/SiO₂ catalysts.

Supplementary **Figure S5** represents the Raman spectra of the used Co/MMS and Co/SiO₂ catalysts.

Supplementary **Figure S6** represents the catalytic activity on the Co/MMS, Co/SiO₂ and Co/SBA-15 catalysts for 20 h on stream at the reaction conditions of T = 230 °C, WHSV = 4000 L/(kg_{cat}•h), P = 2.0 MPa, and H₂/CO = 2.0 by using 0.2 g catalyst with SiC inert material of 2.0 g. The Co/SBA-15 catalyst was prepared by using similar methods with the Co/SiO₂ with the composition of 20wt%Co-0.1wt%Pt/79.9wt%SBA-15, where Co/SBA-15 has a surface area of 670 m²/g and a particle size of Co₃O₄ of around 11.7 nm measured from N₂ sorption and XRD analysis [1].

Supplementary **Table S1** represents the summary of the respective TPR and FT-IR of adsorbed CO molecules calculated from the results of **Figure 2** and **Figure S2**.

Supplementary **Table S2** represents the results of in-situ regeneration of the Co/MMS and Co/SiO₂ by introducing liquid octane with a flow rate of 1.65 ml/min for 20 minutes at the reaction conditions of T = 230 °C, WHSV = 4000 L/(kg_{cat}•h), P = 2.0 MPa, and H₂/CO = 2.0 with 0.1 g Co/MMS and 0.2 g Co/SiO₂ without using inert material of SiC, respectively.

[1] J. M. Cho, C. I. Ahn, C. Pang, J.W. Bae, Catal. Sci. Technol., 2015, 5, 3525-3535.

Figure S1(A). Pore size distribution of MMS support

Figure S1(B). Pore size distribution of Co/MMS catalyst

Figure S1(C). Pore size distribution of the fresh Co/SiO₂ catalyst

Figure S2. FT-IR spectra of the adsorbed CO molecules on the fresh Co/MMS and Co/SiO₂ catalysts

Figure S3. Long-term catalytic stabilities of the Co/MMS and Co/SiO₂ catalysts at the following reaction conditions; T = 230 °C, P = 2.0 MPa, weight hourly space velocity (WHSV) of 12000 L/(kg_{cat}•h), and the feed syngas composition of H₂/CO/N₂ = 63.1/31.5/5.4 for 60 h, where N₂ was used as an internal standard gas by using 0.2 g catalyst with 2.0 g of inert material of SiC.

Figure S4. Full range FT-IR spectra of the fresh and used (A) Co/MMS and (B) Co/SiO₂ catalysts

Figure S5. Raman spectra of the used Co/MMS and Co/SiO₂ catalysts

Figure S6. Catalytic activity on the Co/MMS, Co/SiO₂ and Co/SBA-15 catalysts for 20 h on stream at the reaction conditions of T = 230 °C, WHSV = 4000 L/(kg_{cat}•h), P = 2.0 MPa, and $H_2/CO = 2.0$ by using 0.2 g catalyst with SiC inert material of 2.0 g.

from the results of Figure 2 and Figure 52										
Notation -	TPR (relative peak area (%) and its			Adsorbed CO FT-IR at different						
	ratio of P(I)/P(II))			oxidation states of cobalt						
	< 300°C	> 300°C	Ratio of	Area at 2020 (ICo $^{\delta+}$)	Ratio of					
	(P(I))	(P(II))	P(I)/P(II) ^a	and 2000 (ICo ⁰) cm ⁻¹	$(ICo^{\delta^+})/(ICo^0)^b$					
Co/MMS	36.3	63.7	0.571	11.5 / 89.5	0.128					
Co/SiO ₂	20.3	79.7	0.255	8.8 / 38.3	0.230					

Table S1. Summary of the respective TPR and FT-IR of adsorbed CO molecules calculatedfrom the results of Figure 2 and Figure S2

^aThe ratio of P(I)/P(II) represents the ratio of the integrated peak area assigned for a low temperature reduction peak below 300 °C (P(I)) to the peak assigned for a high temperature reduction peak above 300 °C (P(II)).

^bThe ratio of $I(Co^{\delta+})/(ICo^0)$ was calculated using the relative integrated peak area of the adsorbed CO molecules on the partially oxidized $Co^{\delta+}$ (assigned to $ICo^{\delta+}$ for a shoulder peak at the wavenumber of ~2020 cm⁻¹) divided by the peak area on the metallic Co⁰ (assigned to ICo^0 for the main peak at 2000 cm⁻¹).

Notation	Octane feeding	CO conversion (C-mol%)	CO conversion to CO ₂ (C-mol%)	Product distribution (C-mol%)			Olefin selectivity ^b
				CH_4	C ₂ -C ₄	C_5 +	(C-mol%)
Co/MMS	-	63.7	1.7	9.9	5.7	81.0	12.1
	1 st	48.1	1.3	9.6	1.6	87.4	36.0
	2^{nd}	44.6	1.2	10.2	1.6	87.1	36.5
Co/SiO ₂	-	15.0	0.1	12.0	23.8	64.0	36.3
	1 st	31.0	0.0	6.7	9.2	84.2	31.3

Table S2. Results of in-situ regeneration of the Co/MMS and Co/SiO₂ by introducing liquid

^aThe results of catalytic reaction were summarized using the maximum conversion of CO after in-situ regeneration by introducing liquid octane with a flow rate of 1.65 ml/min for 20 minutes at the reaction conditions of T = 230 °C, WHSV = 4000 L/(kg_{cat}•h), P = 2.0 MPa, and H₂/CO = 2.0 with 0.1 g Co/MMS and 0.2 g Co/SiO₂ without using inert material of SiC, respectively. The CO conversions with time on stream were displayed in **Figure 6**.

^bThe olefin selectivity (C-mol%) was obtained in the C₂-C₄ light hydrocarbons.