Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Surface oxygen vacancies over Co_3O_4 mediated catalytic formaldehyde oxidation at room temperature

Zhong Wang^{a,b}, Wenzhong Wang^{*a}, Ling Zhang^a, and Dong Jiang^{a,b}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road,

Shanghai 200050, People's Republic of China

^b University of Chinese Academy of Science, Beijing 100049, People's Republic of China

^{*} Corresponding author, Fax: +86-21-5241-3122, Email: wzwang@mail.sic.ac.cn

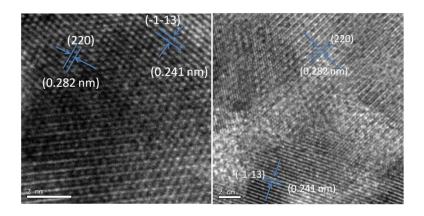


Figure S1. HRTEM images of Co_3O_4 nanobelts.

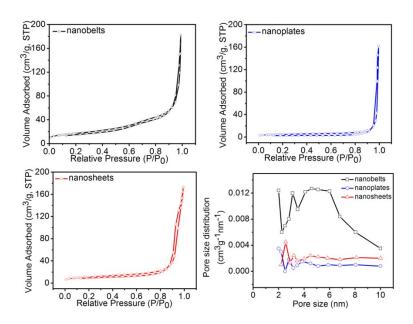


Figure S2. Nitrogen adsorption-desorption isotherms of different Co_3O_4 catalysts with corresponding pore-size distribution.

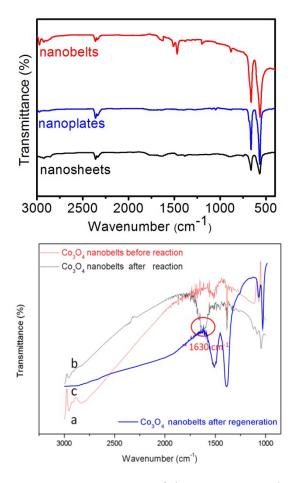


Figure S3. FTIR spectra of three Co₃O₄ catalysts

FTIR spectra of nanobelts before (a) and after (b) reaction, after regeneration (c)

For all the samples, the two absorption bands at 565 cm $^{-1}$ and 661 cm $^{-1}$ can be ascribed to the stretching vibration of Co^{3+} -O and Co^{2+} -O bond, confirming the formation of Co_3O_4 .

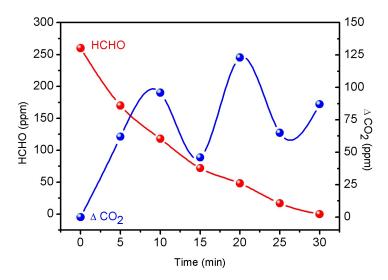


Figure S4. Respective concentration changes of formaldehyde and carbon dioxide $as\ a\ function\ of\ time\ over\ Co_3O_4\ nanobelts.$