Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Iterative Multitarget Evolution Dramatically Enhances Enantioselectivity and Catalytic Efficiency

of Bacillus subtilis Esterase towards Bulky Benzoate Ester of dl-Menthol

Yi Gong, Guo-Chao Xu, Qi Chen, Jin-gang Yin, Chun-Xiu Li* and Jian-He Xu*

Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China. E-mails: chunxiuli@ecust.edu.cn; jianhexu@ecust.edu.cn.

Table of Contents

- Scheme S1. An abbreviated reaction mechanism for the formation of a tetrahedral intermediate of *l*-1.
- 2. Table S1. Primers designed for mutation.
- 3. Table S2. Substitutions observed over multiple rounds of evolutions.
- 4. Table S3. Docking analysis.
- **5.** Table S4. T_m values (°C) of BSE variants measured with purified proteins.
- 6. Table S5. Effects with different cosolvents and surfactants.
- 7. Figure S1. Rescreening results of the random mutagenesis library.
- 8. Figure S2. Thermodynamic analysis of deconvolved BSE_{V7} variants in *dl*-1 hydrolysis.
- **9.** Figure S3. Asymmetric preparation of *l*-menthol from 0.5 M dl-1 employing BSE_{V11} 0.5 g_{CFE} L⁻¹.

Scheme S1. An abbreviated reaction mechanism for the formation of a tetrahedral intermediate of *I*-**1**. The model used for selection of the amino acid residues for CASTing has docked this intermediate into the active site. The formation of benzoic acid was detected by phenol red with the addition of CaCl₂.

Table S1. Primers designed for mutation (all are written 5'-3'). The respective mutant codons are indicated in red, and the restriction sites are underlined. Degenerate nucleotide designation: n = a, t, c, g; k = t, g; m = a, c. Primers were ordered from Sangon, Shanghai.

Primer	Sequence of primer
107/109/110-f	attcacggaggcnnktttnnknnkggagcgggcagtgagcc
107/109/110-r	cactgcccgctccmnnmnnaaamnngcctccgtgaatccac
362/363-f	atgactgatttannknnktggcgccctgccgtcgc
362/363-r	ggcagggcgccamnnmnntaaatcagtcatcatat
400-f	aaagcgtttcacnnkttagagcttccttttgtc
400-r	aggaagctctaamnngtgaaacgctttattgta
68/71-f	ccgtctgatttgnnktcacttnnktatactgagctgccc
68/71-r	cagctcagtatamnnaagtgamnncaaatcagacggctg
188-f	aacagtatttggannktccgccggcggga
188-r	ccgccggcggamnntccaaatactgttac
217/218-f	atggaaagcggcnnknnkcgaacgatgacgaaa
217/218-r	cgtcatcgttcgmnnmnngccgctttccatgat
401/403-f	cgtttcactgcnnkgagnnkccttttgtctttgga
401/403-r	aagacaaaaggmnnctcmnngcagtgaaacgcttta
A107G-f	tggattcacggaggcggtttttatctaggagcg
A107G-r	cgctcctagataaaaaccgcctccgtgaatcca
Y109E-f	tcacggaggcgcttttgagctaggagcgggcag
Y109E-r	ctgcccgctcctagctcaaaagcgcctccgtga
L110V-f	cacggaggcgctttttatgtaggagcggg
L110V-r	cccgctcctacataaaaagcgcctccgtg
A400C-f	aaagcgtttcactgcttagagcttccttttgtc
A400C-r	aggaagctctaagcagtgaaacgctttattgta
A107G/Y109E-f	tggattcacggaggcggttttgagctaggagcgggcagtg
A107G/Y109E-r	cactgcccgctcctagctcaaaaccgcctccgtgaatcca
A107G/L110V-f	gattcacggaggcggtttttatgtaggagcgggcagt

A107G/L110V-r	actgcccgctcctacataaaaaccgcctccgtgaatc
Y109E/L110V-f	gtggattcacggaggcgcttttgaggtaggagcgggca
Y109E/L110V-r	tgcccgctcctacctcaaaagcgcctccgtgaatccac
ep-f	cgcggatccatgactcatcaaatagtaacg
ep-r	ccc <u>aagctt</u> ttattctccttttgaagggaa

Variants	BSE _{V4}	BSE _{V5}	BSE _{V6}	BSE _{V7}	BSE _{V8}	BSE _{V9}	BSE _{V10}	BSE _{V11}
Evolutional target	_	Enantios	electivity		Activity			
14	R	R	R	R	R	R	R	R
34	I	I	I	I	I	I	I	I
68	L	L	L	L	L	L	I	L
73	т	т	Т	Т	т	Т	Т	S
75	L	L	L	L	L	L	L	Ρ
107	А	А	G	G	G	G	G	G
109	Y	Y	E	E	E	E	E	V
110	L	L	v	V	v	V	V	V
270	I	I	I	I	н	I	I	I
327	L	L	L	L	L	L	L	н
391	E	E	E	E	E	E	E	E
400	А	с	А	С	с	С	С	С
401	L	L	L	L	L	Μ	М	М
465	F	F	F	F	F	F	F	F
Total	4	5	7	8	9	9	10	12

Table S2. Substitutions observed over multiple rounds of evolution. The substitution was showed inbold when it was the first time introduced.

	1					
	/-1			d-1		
Mutant	r(O-C)	<i>r</i> (N-O)	Binding affinity	r(O-C)	<i>r</i> (N-O)	Binding affinity
	[Å]	[Å]	[kcal/mol] ^a	[Å]	[Å]	[kcal/mol] ^a
BSE _{V4}	3.2	3.4	-7.0	3.6	4.8	-6.9
BSE _{V7}	3.8	3.3	-7.1	4.3	4.4	-6.3
BSE_{V11}	3.1	3.4	-7.1	3.7	4.4	-6.3

 Table S3.
 Docking analysis.

^{*a*} The binding affinity is caculated by AutoDock.

Entry	Mutant	7 _m (°C)
1	BSE_{V4}	55.2
2	BSE _{V5}	51.0
3	BSE _{V6}	54.2
4	BSE _{V7}	53.3
5	BSE _{V9}	52.9
6	BSE _{V11}	52.6

Table S4. $T_{\rm m}$ value (°C) of BSE mutants measured with purified proteins.

Cacalvant		Time	Conv.	eep	
Cosolvent	LOgP	(h)	(%)	(%)	
DMSO	-1.49	5	6.1	69.3	
DMF	-0.60	5	10.1	64.3	
Methanol	-0.27	5	6.6	70.6	
Ethanol	0.07	5	12.5	72.7	
Isopropanol	0.38	5	9.9	64.9	
<i>n</i> -Butanol	0.97	5	6.6	93.5	
Triton X-100	-	0.5	35.7	92.1	
Tween 80	_	0.5	47.1	90.2	

Table S5. Effects of different cosolvents and surfactants. BSE_{v4} was applied to hydrolyze 50 mM *dl*-menthyl benzoate in 10-mL scale.

Figure S1. Rescreening results of the random mutagenesis library. The parent enzyme BSE_{V9} was displayed in red point.

Figure S2. Thermodynamic analysis of deconvolved BSE_{V7} variants in the hydrolysis of substrate *dl*-1. **A)** The double mutants: ab, ac, ad, bc, bd and cd; **B)** The triple mutants: abc, abd, acd and bcd.

Figure S3. Asymmetric preparation of *I*-menthol from substrate *dI*-**1** at 0.5 M employing BSE_{V11} with a catalyst loading of 0.5 $g_{CFE} L^{-1}$ in 0.1-L scale.