SUPPORTING INFORMATION

Nickel oxide supported on Porous Clay Heterostructures as selective catalysts for the oxidative dehydrogenation of ethane

B. Solsona ^{1*}, P. Concepción ², J.M. López Nieto.^{2*}, A. Dejoz ¹, J.A. Cecilia ³, S. Agouram ⁴, M.D. Soriano ^{2,3}, V. Torres ³, J. Jiménez-Jiménez ³, E. Rodríguez Castellón ³

1) Department of Chemical Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot-Valencia (Spain), 2) Instituto de Tecnología Química, UPV-CSIC, Campus Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia (Spain), 3) Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain), 4) Department of Applied Physics and Electromagnetism, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

* To whom correspondence should be addressed:

Benjamin.Solsona@uv.es and jmlopez@itq.upv.es

Experimental information

Surface coverage

5NiSi and 17NiPCH have similar NiO coverage of the support (ca. 3.10^{-4} g of NiO per m² of support).

5NiSi presents 5 wt.% of NiO and 95 wt.% of silica. Silica has a surface area of 181 m^2/g . Therefore for 1 g of catalyst, 0.05 g of NiO are spread over 0.95 g of support, which corresponds to 171.95 m². Then, there are 2.91.10⁻⁴ g of NiO per m² of support.

17NiPCH presents 17 wt.% of NiO and 83 wt.% of PCH. PCH has a surface area of 644 m^2/g . Therefore for 1 g of catalyst, 0.17 g of NiO are spread over 0.83 g of support, which corresponds to 534.52 m^2 . Then, there are 3.18.10⁻⁴ g of NiO per m^2 of support.

Sample	S _{BET} (m ² g ⁻¹)	t-plot microp (m ² g ⁻¹)	Vp (cm ³ g ⁻¹)	V _P microp• (cm ³ g ⁻¹)	Pore size (nm)	Acidity µmolNH ₃ g ⁻¹	Acidity µmolNH3 m ⁻²
Montmorillonite	49	18	0.109	0.009	12.4	125	2.55
РСН	644	460	0.773	0.280	5.5	308	0.48
PCH-Ti	562	287	0.796	0.164	6.8	395	0.70

Table S1. Physicochemical characteristics of the PCH supports.

Catalyst	W/F ^b	Ethane	Selectivity, %	
		Conversion,%	Ethylene	CO _x
Si	8	0.02	0	100
РСН	8	0.15	62	38
PCH-Ti	8	0.16	64	36

Table S2. Catalytic performance of pure supports in the oxidation of ethane at 450°C.^a

 a Reaction conditions detailed in the experimental part of the text; b Contact time in g_{cat} h $(mol_{C2})^{\text{-1}}$

Catalyst	T_{onset} ¹⁶ O ₂ (°C)	T _{onset} ¹⁶ O ¹⁸ O (°C)	Area ¹⁶ O ₂ / ¹⁶ O ¹⁸ O ^a
10NiSi	Not observed	377	<0.1
10NiPCH	419	425	1.12
10NiPCH-Ti	419	450	1.32

 Table S3. Temperature programmed ¹⁸O₂ isotopic exchange (TPIE) results.

^a relative amount of O-species released until 650°C.

Figure S1. XRD patterns for NiO catalysts supported on conventional silica (NiSiseries) and pillared clays (both NiPCHSi- and NiPCH-Ti-series)

Figure S2. Local EDX spectrum of a single NiO nanoparticle in 17NiPCH-Ti.

Figure S3. Relationship between selectivity to ethylene and the Sat(I)/Main peak ratio determined by XPS. Note: Selectivity to ethylene as in Figure 6.

Figure S4. Evolution of the oxygen exchange (¹⁶O¹⁸O and ¹⁶O₂) formation species per Ni atom during TPIE experiments versus temperature over NiO catalyst.