Electronic Supplementary Information

for

Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts

Yusuke Isaka,^a Kohei Oyama,^a Yusuke Yamada,^{*,b} Tomoyoshi Suenobu^a and Shunichi Fukuzumi^{*,a,c,d}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

^b Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-0022, Japan

^c Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea

^d Faculty of Science and Technology, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan

Table of contents

	Pages
Experimental details	S3 – S5
Table S1	S6
Figs. S1 – S10	S7 – S16
Estimation of the total amount of evolved O ₂	S17
References	S17

Experimental section

Materials

All chemicals commercially available were used without further purification unless otherwise noted. RuCl₃ (38.220 wt% Ru) was purchased from Tanaka Kikinzoku Kogyo K.K. K₃[Co(CN)₆] was purchased from Stream Chemicals. 4,7-dimethyl-1,10-phenanthroline (Me₂phen, 98%), Ag₂SO₄ (99.9%), (NH₄)₂SO₄ (99.99%), Ru(bpy)₃Cl₂•6H₂O, K₃[Cr(CN)₆], $K_4[Mn(CN)_6]$ and $Na_2S_2O_8$ were supplied from Aldrich Chemicals. Oxo[5,10,15,20-tetra(4-pyridyl)porphinato]titanium(IV) ([TiO(tpyp)]) was supplied from Tokyo Chemical Industry Co., Ltd. (TCI). Sc(NO₃)₃•4H₂O (99.9%) was supplied from Mitsuwa Chemicals Co., Ltd. Co(NO₃)₂, FeSO₄, Mn(NO₃)₂, K₂[Pd(CN)₄], K₄[Fe(CN)₆] and $K_2[Ni(CN)_4]$ were supplied from Wako Pure Chemical Industries. Purification of water (18.2) $M\Omega$ cm) was performed with a Milli-Q system (Millipore, Direct-Q 3 UV). [Ru(bpy)₃]SO₄ was synthesised by a reported method. ^{S1}

Spectroscopic measurements in solution

¹H NMR spectra were recorded on a JEOL JNM-AL300 spectrometer in D₂O solutions. The chemical shifts and relative integration signals were referenced by an external standard solution of 5.0 mM 3-(trimethylsilyl)propanoate-2,2,3,3- d_4 acid sodium salt (TSP) in D₂O sealed in a glass capillary. The UV-visible absorption spectra were recorded using a Hewlett Packard 8453 diode array spectrophotometer with a quartz cuvette (light-path length = 1.0 cm) at 298 K.

Synthesis of [Ru^{II}(Me₂phen)₃]SO₄

Tris(4,7-dimethyl-1,10-phenanthroline)ruthenium(II) sulfate ([Ru^{II}(Me₂phen)₃]SO₄) complex was synthesised according to the literature.^{S2} RuCl₃ (40 mg) was refluxed under N₂ overnight in ethanol/water (v/v 80/20) with 6 equiv. of ligand, Me₂phen, to form the red-orange [Ru^{II}(Me₂phen)₃]Cl₂ complex. After evaporation of the solvent, the product was readily precipitated from acetone with ether. The precipitate, [Ru^{II}(Me₂phen)₃]Cl₂, was added to water to be completely dissolved and Ag₂SO₄ (61 mg) solubilised in water was added to the solution. After stirring for 12 h, AgCl as precipitate was filtered off. An aqueous solution of (NH₄)₂SO₄ was added to the reaction solution to obtain crystalline product. ¹H-NMR (300 MHz, D₂O): δ (ppm) 2.88 (s, 6H), 7.41 (d, *J* = 5.12 Hz, 2H), 7.90 (d, *J* = 5.12 Hz, 2H), 8.39 (s, 2H).

Synthesis of heteropolynuclear cyanide complexes

Heteropolynuclear cyanide complexes $(M_x[M'(CN)_y]_z)$, where x = 3, y = 6, z = 2 when M' = Fe, Co, Cr, Fe and Mn; and x = 1, y = 4, z = 1 when M' = Ni, Pd and Pt) were prepared by mixing an aqueous solution containing $K_{(2x/z)}[M'(CN)_y]$ with another aqueous solution of Co(NO₃)₂, FeSO₄•7H₂O, CuSO₄, or Mn(NO₃)₂ to form precipitates.

Characterization of the heteropolynuclear cyanide complexes

The concentrations of Fe and Co ions in heteropolynuclear cyanide complexes were determined by X-ray fluorescence measurements (Rigaku ZSX 1000/MPS). The dynamic light scattering (DLS) data were obtained by Zeta Sizer Nano ZS (Malvern 20 Instruments Ltd., USA). Powder X-ray diffraction (XRD) patterns were recorded by a Rigaku MiniFlex 600 X-Ray 21 diffractometer. IR spectra were measured by a Jasco FT/IR-6200 spectrometer for the samples pelletized with KBr.

Quantification of produced H₂O₂

From spectroscopic titration with an acidic solution of $[TiO(tpypH_4)]^{4+}$ complex (Ti-TPyP reagent), the amount of produced H₂O₂ was determined.^{S2} The [TiO(tpyp)] complex (34 mg) was dissolved in 1.0 L of 50 mM hydrochloric acid and the solution was used as a Ti-TPyP reagent. An aliquot (e.g., 10 µL) of the reaction solution was diluted with water and 0.25 mL of the sample solution was mixed with 0.25 mL of 4.8 M perchloric acid and 0.25 mL of the Ti-TPyP reagent. After 5 min at room temperature, the mixture was diluted to 2.5 mL with water and used for the spectroscopic measurement. The absorbance at $\lambda = 434$ nm was measured by using a Hewlett Packard 8453 diode array spectrometer (A_S). In the similar manner, a blank solution was prepared by adding distilled water in place of the sample solution in the same volume with its absorbance designated as A_B . The difference in absorbance was determined by following the equation: $\Delta A_{434} = A_B - A_S$. Based on ΔA_{434} and the volume of the solution, the amount of hydrogen peroxide was determined according to the literature.^{S3}

Photocatalytic Water Oxidation Reaction

A typical procedure for water oxidation reactions is as follows: a heteropolynuclear cyanide complex (1.0 mg) was suspended to a phosphate buffer (pH 8.0, 50 mM, 2.0 mL) containing $[Ru(bpy)_3]^{2+}$ (100 μ M) and Na₂S₂O₈ (5.0 mM) under Ar atmosphere. After photoirradiation ($\lambda > 420$ nm) of the suspension with magnetic stirring, an aliquot of headspace gas was analyzed to determine the amount of evolved O₂ by a gas chromatograph (Shimadzu GC-17A equipped with a molecular sieve 5A column and thermal

conductivity detector).

Water Oxidation Reaction Using [Ru^{III}(Me₂phen)₃]³⁺ as an Oxidant

An aqueous solution containing $[Ru(Me_2phen)_3]^{3+}$ was prepared according to the literature.^{S4} Excess amount of PbO₂ was added to an H₂SO₄ solution (0.10 M) containing $[Ru^{II}(Me_2phen)_3]^{2+}$ (200 mM). Heteropolynuclear cyanide complex (0.075 mg) was dispersed in water (4.0 mL) and sealed with a rubber septum in a glass tube (4.9 mL). 20 µL of the $[Ru^{III}(Me_2phen)_3]^{3+}$ aqueous solution was filtered with a membrane filter and injected into the tube using a syringe. The amount of evolved oxygen gas in the headspace was analysed by an oxygen sensor (FOXY Fibre Optic Oxygen Sensor, Ocean Optics). The total amount of evolved O₂ was calculated based on the equation shown in page S15.

Repetitive Photocatalytic H₂O₂ Production

 H_2O_2 production was performed by visible light irradiation ($\lambda > 450$ nm) of $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 μ M) in the presence of Sc³⁺ (100 mM) and $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ (2.5 mg) in O₂-saturated H₂O (5.0 mL). After the reaction,, $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ was recovered by centrifugation as a precipitate. To the recovered precipitate, an aqueous solution (5.0 mL) of $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 μ M) and Sc³⁺ (100 mM) was added and the resulting solution was used for another cycle of H₂O₂ production.

	Calculated ratio (mol%)		Experimental ratio ^{<i>a,b</i>} (mol%)	
X	Fe	Со	Fe	Со
0	0	100	0.0	100
0.10	6	94	6.0	94
0.50	30	70	31	69
0.75	45	55	45	55
0.90	54	46	57	43
1	60	40	64	36

Table S1 Calculated and experimentally observed ratios of Fe and Co ions in $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$

^{*a*} Experimentally observed ratios are based on X-ray fluorescence measurements. ^{*b*} Four measurements were performed for each samples and then the data were averaged to give the experimental ratios.

Fig. S1 The powder X-ray diffraction patterns of $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$ [x = 0 (blue), 0.10 (light blue), 0.50 (light green), 0.75 (green), 0.90 (orange) and 1 (red)].

Fig. S2 Size distributions of the $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$ particles obtained by DLS measurements.

Fig. S3 H₂O₂ production from H₂O and O₂ in an O₂-saturated aqueous solution (2.0 mL) of $[Ru(Me_2phen)_3]^{2+}$ (100 µM), Sc(NO₃)₃ (100 mM) and $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$ (1.0 mg), where x = 1 (black square), 0.90 (inverse red triangle), 0.75 (orange circle), 0.50 (green diamond), 0.10 (purple triangle) and 0 (blue diamond) under photoirradiation of visible light with a Xenon lamp using a UV light cut filter ($\lambda > 420$ nm) at room temperature. The initial rates of H₂O₂ production were calculated based on the slopes of the lines in the figure.

Fig. S4 (a) IR spectra of $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$, where x = 1 (black), 0.90 (red), 0.75 (orange), 0.50 (green), 0.10 (purple) and 0 (blue). (b) Plot of n_{CN} vs. the ratio of Fe to Co in the (Fe_xCo_{1-x}) moiety (Fr_{Fe}) . The v_{CN} of the complexes were measured 3 times for each of the complexes.

Fig. S5 Time courses of O₂ evolution by photoirradiation of an aqueous phosphate buffer (2.0 mL) containing Na₂S₂O₈ (5.0 mM), Ru[(bpy)₃]²⁺ (100 μ M) and (Fe_xCo_{1-x})₃[Co(CN)₆]₂ (1.0 mg), where x = 1 (black square), 0.90 (green diamond), 0.75 (red inverse triangle), 0.50 (orange circle) and 0 (blue diamond), at pH 8.0 at room temperature. The rates of O₂ production shown in Fig. 4 were calculated from the slopes of the lines.

Fig. S6 Time course of O_2 evolution after addition of $[Ru^{III}(Me_2phen)_3]^{3+}$ (1 mM) to an aqueous suspension (4 mL) of $(Fe_{0.75}Co_{0.25})_3[Co(CN)_6]_2$ (0.10 mg) at pH 3 measured using an O_2 sensor.

Fig. S7 (a) Time courses of H_2O_2 production at different concentrations of $[Ru^{II}(Me_2phen)_3]^{2+}$ [10 μ M (orange circle), 50 μ M (blue square), 100 μ M (green triangle) and 200 μ M (red diamond)] under irradiation of $[Ru^{II}(Me_2phen)_3]^{2+}$ with visible light ($\lambda > 420$ nm) in the presence of $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ (1.0 mg) and Sc³⁺ (100 mM) in O₂-saturated H₂O (2.0 mL) at room temperature. (b) Time courses of production of H₂O₂ from H₂O and O₂ in an O₂-saturated aqueous solution (2.0 mL) of $[Ru(Me_2phen)_3]^{2+}$ (100 μ M), Sc(NO₃)₃ (100 mM) and various amounts of $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ [0.5 mg (gray square), 1.0 mg (green diamond) and 2.0 mg (blue circle)] under visible light ($\lambda > 420$ nm) irradiation at room temperature.

Fig. S8 (a) Time course of H_2O_2 production under visible light irradiation ($\lambda = 450$ nm) of $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 μ M) in the presence of Sc³⁺ (100 mM) and $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ (1.0 mg) in O₂-saturated H₂O (2.0 mL). The quantum efficiency was calculated from the slope of the black line. (b) Time course of H₂O₂ production under photoirradiation of $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 μ M) in the presence of Sc³⁺ (100 mM) and $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ (1.0 mg) in O₂-saturated H₂O (2.0 mL). A solar simulator, in which the intensity was adjusted to 10 mJ cm⁻² s⁻¹ (AM1.5), was used as the light source. The solar energy conversion efficiency was determined from the slope of the black line.

Fig. S9 Time course of H_2O_2 production under visible light irradiation ($\lambda > 450$ nm) of $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 µM) in the presence of Sc³⁺ (100 mM) and $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ (2.5 mg) in O₂-saturated H₂O (5 mL). $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ was recovered by centrifugation at 16 h, 33 h, 50 h, 68 h, and 85 h. To the recovered $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$, an aqueous solution (5.0 mL) of $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 µM) and Sc³⁺ (100 mM) was added and the resulting solution was used for the next cycle of H₂O₂ production.

Fig. S10 (a) IR spectra, (b) powder X-ray diffraction patterns, and (c) DLS measurements of $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ (orange lines) and the precipitate after centrifugation (black lines) of the reaction solution obtained after the reaction under visible light irradiation ($\lambda > 450 \text{ nm}$) of $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 µM) for 16 h in the presence of Sc³⁺ (100 mM) and $(Co_{0.25}Fe_{0.75})_3[Co(CN)_6]_2$ (8.0 mg) in O₂-saturated H₂O (16 mL).

Estimation of the total amount of evolved O_2 by measuring the O_2 amount in the headspace in equilibrium with that dissolved in solution

The total amount of evolved O₂ (*T* [µmol]) was calculated based on the following equations where *G* [µmol] is the O₂ amount in the headspace in equilibrium with O₂ dissolved in solution (amount: *L* [µmol]) as expressed in eqn (S1). The *G* value can be expressed by eqn (S2) using volume of the headspace (*x* [mL]) and O₂ molar fraction (*z* %) in the headspace where the volume of O₂ gas is 2.5 ×10 [L] at 298 K under atmospheric pressure, 1.0×10^4 [Pa]. The *L* value can be expressed by eqn (S3) using the volume of the reaction solution (*y* [mL]) and *z* where the concentration O₂ in an O₂-saturated water is 1.2 [mM].^{S5}

$$T [\mu \text{mol}] = G[\mu \text{mol}] + L[\mu \text{mol}]$$
(S1)

$$G[\mu \text{mol}] = \frac{x [\text{mL}]}{2.5 \times 10 [\text{L mol}^{-1}]} \times \frac{z[\%]}{100} \times 1000$$
(S2)

$$L[\mu mol] = 1.2 [mM] \times y [mL] \times \frac{z[\%]}{100}$$
 (S3)

References

S1 D. Hong, Y. Yamada, T. Nagatomi, Y. Takai and S. Fukuzumi, J. Am. Chem. Soc., 2012, 134, 19572-19575.

S2 C. Turro, J. M. Zaleski, Y. M. Karabatsos and D. G. Nocera, *J. Am. Chem. Soc.*, 1996, **118**, 6060-6067.

S3 C. Matsubara, N. Kawamoto and K. Takamura, Analyst, 1992, 117, 1781-1784.

S4 P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz and N. Sutin, J. Am. Chem. Soc., 1984, 106, 4772-4783.

S5 S. Kato, D. Hong, T. Suenobu, Y. Yamada and S. Fukuzumi, *Energy Environ. Sci.*, 2013, **6**, 3756-3764.