Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Organic base/benzyl bromide: an efficient catalytic system for

chemical fixation of CO₂ into cyclic carbonates under metal- and

solvent-free conditions

Lin Wang,^a Koichi Kodama,^a and Takuji Hirose*^a

^a Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
*: Corresponding author.E-mail: <u>hirose@apc.saitama-u.ac.jp</u> Fax: (+)81 488583522.

Experimental Section

Scheme S1 and General information	S2
Representative procedure for the Cyclic Carbonate Formation	
Reaction of chiral epoxides	
¹ H and ¹³ C NMR Spectral Charts	S11

Scheme S1 Chemical structures and designations of the organic bases used in this work.

Experimental Section

General information

All starting materials and solvents commercially available were purchased at the highest quality from Sigma-Aldrich or Wako and used as received unless otherwise indicated. Chemical yields refer to the pure isolated substances. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were obtained using a Brucker AV-500 (500 MHz) spectrometer. The chemical shifts of the products were reported in ppm with reference to Me₄Si as the internal standard in CDCl₃ solution. The data were reported in the following order: chemical shift, multiplicity, coupling constants in Hz and integration. Enantiomeric excesses of the carbonates were determined by HPLC analyses with a Daicel Chiralcel OD-3 with detection at 254 nm.

Representative procedure for the Cyclic Carbonate Formation

4-Chloromethyl-[1,3]dioxolan-2-one (4b)

In a 20 mL two-neck flask, epichlorohydrin **4a** (6 mmol, 0.555 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were added and stirred at 65 °C for 22 h under an atmosphere of CO₂ (99.999%, balloon). After completion, the reaction mixture was purified by column chromatography (hexane : ethyl acetate = 1 : 1) to afford the desired cyclic carbonate 0.778g (yield: 95.0%).

¹H NMR (500 MHz, CDCl₃): 5.12–5.01 (m, 1H), 4.69–4.55 (m, 1H), 4.48–4.35 (m, 1H), 3.89 (dd, *J* = 12.5, 4.0 Hz, 1H), 3.77 (dd, *J* = 12.5, 3.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): 154.8, 74.7, 67.0, 44.6.

Propylene carbonate (1b)

Propylene oxide (**1a**, 6 mmol, 0.349 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 1 : 1) to afford the desired cyclic carbonate 0.502 g (yield: 82.0%).

¹H NMR (500 MHz, CDCl₃): 4.92-4.80 (m, 1H), 4.62–4.51 (m, 1H), 4.10-3.95 (m, 1H), 1.55-1.40 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): 155.2, 73.7, 70.7, 19.3.

4-Butyl-1,3-dioxolan-2-one (2b)

1,2-Epoxyhexane (**2a**, 6 mmol, 0.601 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 0.735 g (yield: 85%).

¹H NMR (500 MHz, CDCl₃): 4.80–4.65 (m, 1H), 4.60–4.50 (m, 1H), 4.18–4.01 (m, 1H), 1.85–1.62 (m, 2H), 1.55–1.22 (m, 4H), 0.93 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): 155.2, 77.2, 69.4, 33.4, 26.4, 22.2, 13.7.

4-Hexyl-1,3-dioxolan-2-one (3b)

1,2-Epoxyoctane (**3a**, 6 mmol, 0.769 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 3 : 1) to afford the desired cyclic carbonate 0.568 g (yield: 55%).

¹H NMR (500 MHz, CDCl₃): 4.79–4.68 (m, 1H), 4.61–4.50 (m, 1H), 4.15–4.02 (m, 1H), 1.85-1.62 (m, 2H), 1.55-1.21 (m, 8H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): 155.2, 77.2, 69.4, 33.7, 31.5, 28.7, 24.3, 22.4, 13.9.

4-(But-3-en-1-yl)-1,3-dioxolan-2-one (5b)

1,2-Epoxy-5-hexene (5a, 6 mmol, 0.589 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5

mol%, 0.051g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 0.691 g (yield: 81%).

¹H NMR (500 MHz, CDCl₃): 5.89–5.63 (m, 1H), 5.18-4.90 (m, 2H), 4.79–4.60 (m, 1H), 4.59–4.42 (m, 1H), 4.15–3.95 (m, 1H), 2.30–2.01 (m, 2H), 1.95–1.65 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): 155.1, 136.3, 116.0, 76.5, 69.4, 32.8, 28.6.

4-Allyloxymethyl-1,3-dioxolan-2-one (6b)

Allyl glycidyl ether (**6a**, 6 mmol, 0.685 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 1 : 1) to afford the desired cyclic carbonate 0.807 g (yield: 85%).

¹H NMR (CDCl₃, 500 MHz): 5.95–5.80 (m, 1H), 5.35–5.12 (m, 2H), 4.93–4.80 (m, 1H), 4.60–4.45 (m, 1H), 4.44–4.30 (m, 1H), 4.11–3.99 (m, 2H), 3.75–3.65 (m, 1H), 3.64–3.52 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): 155.2, 133.9, 117.3, 75.4, 72.3, 68.9, 66.2.

4-(Phenoxymethyl)-1,3-dioxolan-2-one (7b)

1,2-Epoxy-3-phenoxy propane (7a, 6 mmol, 0.900 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were combined in a 20 mL two-neck flask according to

the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 1.09 g (yield: 94%).

¹H NMR (500 MHz, CDCl₃): 7.36–7.22 (m, 2H), 7.06–6.92 (m, 1H), 6.91–6.85 (m, 2H), 5.06–4.95 (m, 1H), 4.65–4.56 (m, 1H), 4.55–4.46 (m, 1H), 4.22 (dd, *J* = 10.5, 4.0 Hz, 1H), 4.12 (dd, *J* = 10.5, 3.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): 157.8, 154.8, 129.7, 122.0, 114.7, 74.2, 66.9, 66.2.

4-Phenyl-1,3-dioxolan-2-one (8b)

In a 20 mL two-neck flask, styrene oxide **8a** (6 mmol, 0.721 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were added and stirred at 65 °C for 22 h under an atmosphere of CO₂ (99.999%, balloon). After completion, the reaction mixture was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 0.806 g (yield: 82.0%).

¹H NMR (500 MHz, CDCl₃): 7.42–7.37 (m, 2H), 7.37–7.30 (m, 3H), 5.70–5.60 (m, 1H), 4.81–4.70 (m, 1H), 4.31–4.20 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): 155.0, 135.9, 129.7, 129.2, 126.0, 78.0, 71.2.

Hexahydro-benzo[1,3]dioxol-2-one (9b)

In a 20 mL two-neck flask, styrene oxide **9a** (6 mmol, 0.589 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were added and stirred at 95 °C for 22 h under an atmosphere of CO₂ (99.999%, balloon). After completion, the reaction mixture was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to

afford the desired cyclic carbonate 0.251 g (yield: 31.0%).

¹H NMR (300 MHz, CDCl₃): 4.76-4.59 (m, 2H), 2.0-1.79 (m, 4H), 1.72-1.53 (m, 2H), 1.51-1.31 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): 155.35, 75.73, 26.78, 19.17.

(*R*)-4-Benzyloxymethyl-1,3-dioxolan-2-one ((*R*)-10b)

(*R*)-Glycidyl benzyl ether (**10a**, 6 mmol, 0.985 g), DBU (5 mol%, 0.046g) and PhCH₂Br (5 mol%, 0.051g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 1.10g (yield: 89%).

¹H NMR (500 MHz, CDCl₃): 7.40-7.27 (m, 5H), 4.88-4.75 (m, 1H), 4.55 (q, J = 12.0 Hz, 2H), 4.47 (t, J = 8.5 Hz, 1H), 4.37 (dd, J = 8.5 Hz, 6.5 Hz, 1H), 3.71 (dd, J = 10.5 Hz, 3.5 Hz, 1H), 3.61 (dd, J = 11.0 Hz, 3.5 Hz, 1H) ¹³C NMR (125 MHz, CDCl₃): 154.91, 137.06, 128.59, 128.1, 127.77, 74.98, 73.73, 68.84, 66.31

Reaction of chiral epoxide

(*R*)-4-Phenyl-1,3-dioxolan-2-one ((*R*)-8b)

Reaction of (*R*)-styrene oxide was conducted according to the representative procedure, and the *ee* of the product was determined by chiral HPLC measurement using Chiralcel OD-3, 10% IPA/hexanes, 1 mL/min, t_R =19.89 min, t_S =24.8 min, 254 nm. Minimal racemization of the product (98% *ee*) relative to the starting material (99% *ee*) was observed.

No.	Rt	Area	Area (%)	Height	NTP	Tf
1	19.89	10360676	98.9445	388936	12085.2	1.339
2	24.8	121119.3	1.0555	5258	27084.8	1.089

(*R*)-4-Benzyloxymethyl-1,3-dioxolan-2-one ((*R*)-10b)

Reaction of (*R*)-Glycidyl benzyl ether was conducted according to the representative procedure, and the *ee* of the product was determined by chiral HPLC measurement using Chiralcel OD-3, 10% IPA/hexanes, 1 mL/min, t_R =32.48 min, t_S =37.64 min, 254 nm. Some racemization of the product (84% *ee*) relative to the starting material (99% *ee*) was observed.

No.	Rt	Area	Area (%)	Height	NTP	Tf
1	32.48	5129703.029	91.9748	103839	9651.7	0.782
2	37.64	447591.732	8.0252	12465	25039	1.181

When only DBU was used as catalyst, (*R*)-10b was obtained in 35% yield with retention of stereochemistry (>99% *ee*), and the *ee* of the product was determined under the same condition.

¹H and ¹³C NMR Spectra:

