Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Catalytic oxidation of methyl bromide using ruthenium-based catalysts

Xiaolong Liu^a, Junlin Zeng^{a,b}, Jian Wang^{a,c}, Wenbo Shi^{a,d}, Tingyu Zhu^{a, *}

^aBeijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory

for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese

Academy of Sciences, Beijing 100190, China

^bChemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China

^cGraduate University of Chinese Academy of Sciences, Beijing 100049, China

^dInstitute of Chemical Engineering, China University of Petroleum, Beijing, 102249, China

(*) Corresponding author. Tel./Fax: +86-10-82544821.

E-mail address: tyzhu@ipe.ac.cn

Contents

- 1. The XPS data of the Ru-based catalysts
- 2. The catalytic evaluation platform
- 3. The multi-pollutants test without methyl acetate
- 4. The inlet and outlet concentration of CO within the temperature range of 200-240 °C

Catalyst	Ru _{cus}	Ru _{cus+} O _{ot}	$Ru^{4+}_{satellite}$	Ru/Ti
	(at.%)	(at.%)	(at.%)	
Fresh Ru/TiO ₂	59.6	23.5	16.9	0.022
Used Ru/TiO ₂	52.8	27.1	20.1	0.013

Table S1. The XPS data of the fresh and used Ru/TiO $_2$ catalysts

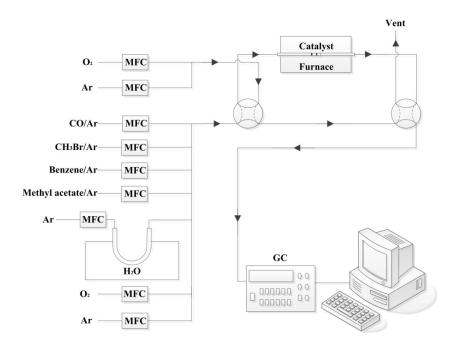


Fig. S1 The catalytic evaluation platform

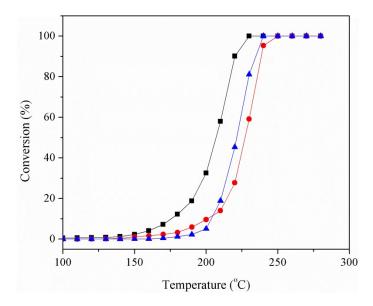


Fig. S2 The multi-pollutants test without methyl acetate: CO (\blacksquare), CH₃Br (\bullet), benzene (\blacktriangle) conversions as a function of reaction temperature over Ru/TiO₂ under the conditions of pollutants concentrations = 3500 ppm, 100 ppm, and 200 ppm, respectively, O₂ concentration = 20 vol%, and WHSV =60,000

mL/(g h).

Temperature	Inlet concentration	Outlet concentration
(°C)	(ppm)	(ppm)
200	3500	3572
210	3500	3565
220	3500	3664
230	3500	3625
240	3500	3540

Table S2. The outlet concentration of CO within the temperature range of 200-240 $^{\circ}$ C
