Electronic Supplementary Information (ESI) for

Facile access to *N*-substituted anilines via dehydrogenative aromatization catalysis over supported gold–palladium bimetallic nanoparticles

Kento Taniguchi, Xiongjie Jin, Kazuya Yamaguchi and Noritaka Mizuno*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. Email: tmizuno@mail.ecc.u-tokyo.ac.jp

Effect of catalyst preparation methods

As described in Experimental section, $Au-Pd/Al_2O_3$ used in this study was prepared by "coprecipitation" of gold and palladium hydroxide precursors on Al_2O_3 , followed by the reduction using H₂. By this procedure, Au–Pd alloy nanoparticles with the average size of 2.9 nm were formed on the support (Fig. 1). This Au–Pd/Al₂O₃ catalyst showed the high catalytic performance for the present dehydrogenative aromatization. Under the conditions described in Table 1, the desired aniline **3aa** was produced in 59% yield (Table 1, entry 3).

One referee pointed out the importance of the preparation method for such kinds of bimetallic catalysts. Thus, according to the comment, we prepared two $Au-Pd/Al_2O_3$ catalysts with different orders of the component supporting (see the following **Methods A** and **B**), and their catalytic performances were examined for the dehydrogenative aromatization of 1a with 2a under the conditions described in Table 1.

(Method A) Initially, Pd/Al₂O₃ was prepared. Then, the gold hydroxide species was precipitated onto Pd/Al₂O₃, followed by the H₂ reduction (Au: 0.109 mmol g⁻¹, Pd: 0.120 mmol g⁻¹). The notation of this catalyst is Au–Pd/Al₂O_{3(Pd→Au)}. It was confirmed by the TEM analysis that the average size of nanoparticles in Au–Pd/Al₂O_{3(Pd→Au)} was 3.5 nm (Fig. S6). When using Au–Pd/Al₂O_{3(Pd→Au)} for the dehydrogenative aromatization of **1a** with **2a**, 62% yield of **3aa** was obtained. Thus, the catalytic performance of Au–Pd/Al₂O_{3(Pd→Au)} was almost the same as that of Au–Pd/Al₂O₃ (59% yield, Table 1, entry 3).

(Method B) Initially, Au/Al₂O₃ was prepared. Then, the palladium hydroxide species was precipitated onto Au/Al₂O₃, followed by the H₂ reduction (Au: 0.115 mmol g^{-1} , Pd: 0.128 mmol g^{-1}). The notation of this catalyst is Au–Pd/Al₂O_{3(Au→Pd)}. As shown in Fig. S7a, the average size of nanoparticles (6.3 nm) and the size distribution were relatively larger than those of Au–Pd/Al₂O₃ and Au–Pd/Al₂O_{3(Pd→Au)}. It was revealed by the HAADF-STEM and EDS analyses that the larger particles (>5 nm) were mainly core–shell (Au_{core}–Pd_{shell}) and palladium nanoparticles and that the smaller ones (<3 nm) were predominantly palladium (Fig. S7b–d). Therefore, **Method B** is not suitable for preparation of Au–Pd

alloy nanoparticles. When the reaction was performed using $Au-Pd/Al_2O_{3(Au\rightarrow Pd)}$, the desired **3aa** was obtained in 39% yield, and the performance was significantly inferior to those of $Au-Pd/Al_2O_3$ and $Au-Pd/Al_2O_{3(Pd\rightarrow Au)}$.

Compound data

3aa (CAS registry number: 92-53-5)

4-Phenylmorpholine (3aa). ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS): δ = 7.28–7.25 (m, 2H), 6.91– 6.86 (m, 3H), 3.84 (t, *J* = 4.5 Hz, 4H), 3.13 (t, *J* = 4.3 Hz, 4H); ¹³C {¹H} NMR (125 MHz, CDCl₃, 25 °C, TMS): δ = 151.5, 129.4, 120.3, 116.0, 67.2, 49.6; MS (70 eV, EI): *m/z* (%): 163 (58) [*M*⁺], 164 (6), 162 (5), 132 (6), 106 (10), 105 (100), 104 (41), 91 (5), 78 (5), 77 (30), 51 (11).

3ab (CAS registry number: 4096-21-3)

1-Phenylpyrrolidine (3ab). MS (70 eV, EI): *m/z* (%): 147 (76) [*M*⁺], 148 (8), 146 (100), 144 (6), 119 (8), 118 (5), 104 (18), 91 (49), 77 (29), 51 (10), .

3ac (CAS registry number: 1821-36-9)

N-Cyclohexylbenzenamine (3ac). ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.16-7.12$ (m, 2H), 6.64 (tt, J = 7.5 and 1.0 Hz, 1H), 6.58–6.56 (m, 2H), 3.49 (brs, 1H), 3.26–3.21 (m, 1H), 2.06–2.03 (m, 2H), 1.77–1.72 (m, 2H), 1.67–1.61 (m, 1H), 1.40–1.31 (m, 2H), 1.25–1.09 (m, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃, 25 °C, TMS): $\delta = 147.7$, 129.5, 117.1, 113.4, 51.9, 33.8, 26.2, 25.3; MS (70 eV, EI): m/z (%): 175 (34) [M^+], 133 (12), 132 (100), 119 (12), 118 (15), 117 (9), 106 (9), 93 (12), 91 (5), 77 (10).

3ad (CAS registry number: 4746-32-1)

N-Hexylbenzenamine (3ac). MS (70 eV, EI): *m/z* (%): 177 (15) [*M*⁺], 107 (8), 106 (100), 79 (5), 77 (9).

3ae (CAS registry number: 122-39-4)

N-Phenylbenzenamine (3ae). ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.27-7.24$ (m, 4H), 7.06 (d, J = 8.5 Hz, 4H), 6.92 (t, J = 7.0 Hz, 2H), 5.67 (brs, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃, 25 °C, TMS): $\delta = 143.4$, 130.0, 121.3, 118.1; MS (70 eV, EI): m/z (%): 169 (100) [M^+], 170 (13), 168 (58), 167 (30), 166 (5), 141 (5), 115 (5), 84 (16), 77 (11), 66 (8), 65 (7), 51 (12).

3af (CAS registry number: 1208-86-2)

4-Methoxy-*N***-phenylbenzenamine (3af).** MS (70 eV, EI): *m/z* (%): 199 (75) [*M*⁺], 200 (11), 185 (13), 184 (100), 167 (5), 155 (5), 154 (9), 129 (15), 128 (12), 77 (12), 51 (7).

3ag (CAS registry number: 620-84-8)

4-Methyl-*N***-phenylbenzenamine (3ag).** MS (70 eV, EI): *m/z* (%): 183 (100) [*M*⁺], 184 (15), 182 (53), 180 (7), 168 (6), 167 (19), 91 (16), 90 (6), 77 (10), 65 (5), 51 (5).

3ba (CAS registry number: 3077-16-5)

4-(4-Methylphenyl)morpholine (3ba). MS (70 eV, EI): *m/z* (%): 177 (49) [*M*⁺], 178 (6), 120 (10), 119 (100), 118 (28), 91 (44), 90 (5), 89 (5), 77 (5), 65 (15), 51 (5).

3ca (CAS registry number: 7025-91-4)

4-(3-Methylphenyl)morpholine (3ca). MS (70 eV, EI): *m/z* (%): 177 (47) [*M*⁺], 178 (6), 146 (5), 120 (10), 119 (100), 118 (33), 92 (5), 91 (34), 89 (5), 77 (5), 65 (16).

3da (CAS registry number: 1207717-24-5)

4-(4-Ethylphenyl)morpholine (3ca). MS (70 eV, EI): *m/z* (%): 191 (78) [*M*⁺], 192 (10), 190 (6), 177 (5), 176 (39), 134 (11), 133 (100), 132 (15), 130 (6), 119 (12), 118 (98), 117 (9), 105 (19), 104 (9), 103 (10), 91 (16), 90 (8), 89 (6), 79 (8), 78 (8), 77 (19), 65 (8), 51 (7).

3ea (CAS registry number: 169963-54-6)

4-[1,1'-biphenyl]-4-ylmorpholine (3ea). MS (70 eV, EI): *m/z* (%): 239 (86) [*M*⁺], 240 (15), 238 (5), 182 (15), 181 (100), 180 (22), 167 (6), 154 (5), 153 (27), 152 (37), 151 (9), 147 (5), 90 (21), 77 (8), 76 (15), 73 (18).

3bb (CAS registry number: 54104-82-4)

1-(4-Methylphenyl)pyrrolidine (3bb). MS (70 eV, EI): *m/z* (%): 161 (75) [*M*⁺], 162 (8), 160 (100), 133 (5), 118 (16), 117 (6), 105 (43), 91 (23), 77 (5), 65 (11).

3cb (CAS registry number: 71982-22-4)

1-(3-Methylphenyl)pyrrolidine (3cb). MS (70 eV, EI): *m/z* (%): 161 (73) [*M*⁺], 162 (8), 160 (100), 133 (6), 118 (13), 117 (5), 106 (5), 105 (43), 91 (23), 77 (5), 65 (12).

3db (CAS registry number: 872874-50-5)

1-(4-Ethylphenyl)pyrrolidine (3db). MS (70 eV, EI): *m/z* (%): 175 (52) [*M*⁺], 176 (7), 174 (28), 161 (12), 160 (100), 132 (5), 130 (5), 119 (13), 118 (10), 117 (5), 91 (8), 77 (7).

3eb (CAS registry number: 265991-28-4)

1-[1,1'-biphenyl]-4-ylpyrrolidine (3eb). MS (70 eV, EI): *m/z* (%): 223 (100) [*M*⁺], 224 (17), 222 (81), 180 (8), 167 (25), 165 (6), 153 (14), 152 (23), 151 (6), 112 (6), 90 (6), 76 (8).

3bc (CAS registry number: 10386-93-3)

N-Cyclohexyl-4-methylbenzenamine (3bc). MS (70 eV, EI): *m/z* (%): 189 (38) [*M*⁺], 190 (5), 147 (13), 146 (100), 133 (15), 132 (10), 131 (14), 130 (7), 120 (9), 118 (7), 107 (10), 106 (14), 91 (10), 77 (6), 65 (5).

3cc (CAS registry number: 65021-67-2)

N-Cyclohexyl-3-methylbenzenamine (3cc). MS (70 eV, EI): *m/z* (%): 189 (38) [*M*⁺], 190 (6), 147 (13), 146 (100), 133 (12), 132 (11), 131 (14), 130 (6), 120 (8), 118 (8), 117 (5), 107 (9), 106 (7), 91 (10), 65 (5).

3dc (CAS registry number: 801192-87-0)

N-Cyclohexyl-4-ethylbenzenamine (3dc). MS (70 eV, EI): *m/z* (%): 203 (50) [*M*⁺], 204 (8), 188 (7), 161 (15), 160 (100), 147 (15), 134 (8), 132 (23), 131 (12), 130 (13), 118 (5), 106 (21), 105 (7), 91 (5), 79 (5), 77 (7).

3ec (CAS registry number: 887748-95-0)

N-Cyclohexyl-[1,1'-biphenyl]-4-amine (3ec). MS (70 eV, EI): *m/z* (%): 251 (82) [*M*⁺], 252 (16), 209 (19), 208 (100), 195 (15), 194 (11), 193 (15), 182 (8), 180 (5),169 (17), 168 (8), 167 (9), 153 (6), 152

(12), 141 (6), 115 (6), 104 (6), 55 (5).

3be (CAS registry number: 620-84-8)

4-Methyl-*N***-phenylbenzenamine (3be).** MS (70 eV, EI): *m/z* (%): 183 (100) [*M*⁺], 184 (14), 182 (53), 180 (7), 168 (7), 167 (20), 91 (20), 90 (8), 77 (13), 65 (6), 51 (7).

3ce (CAS registry number: 1205-64-7)

3-Methyl-*N***-phenylbenzenamine (3ce).** MS (70 eV, EI): *m/z* (%): 183 (100) [*M*⁺], 184 (14), 182 (28), 180 (6), 168 (16), 167 (35), 91 (11), 77 (9), 65 (6), 51 (5).

3de (CAS registry number: 32804-22-1)

4-Eethyl-*N***-phenylbenzenamine (3de).** MS (70 eV, EI): *m/z* (%): 197 (50) [*M*⁺], 198 (8), 183 (15), 182 (100), 180 (6), 168 (5), 167 (11), 91 (5), 90 (8), 77 (11), 51 (5).

3ee (CAS registry number: 32228-99-2)

N-Phenyl-[1,1'-biphenyl]-4-amine (3ee). MS (70 eV, EI): *m/z* (%): 245 (100) [*M*⁺], 246 (20), 244 (20), 243 (6), 167 (6), 152 (5), 115 (5).

3fb (CAS registry number: 27594-18-9)

1,1'-(1,3-phenylene)bispyrrolidine (3fb). MS (70 eV, EI): *m/z* (%): 216 (100) [*M*⁺], 217 (15), 215 (71), 189 (6), 188 (33), 187 (30), 174 (6), 173 (20), 161 (8), 160 (7), 147 (6), 146 (18), 145 (5), 132 (5), 118 (9), 117 (8), 108 (9), 107 (10), 104 (7), 91 (10), 86 (5), 77 (7), 65 (6).

Entry	Hydrogen acceptor	Hydrogenated product	Yield (%)
1	styrene	ethylbenzene	>99
2	4 aa	5aa	65
3	1-octene	<i>n</i> -octane	63
4	cyclooctene	cyclooctane	66

Table S1 Hydrogenation of various hydrogen acceptors using Au-Pd/Al₂O_{3^a}

^{*a*} Reaction conditions: Au–Pd/Al₂O₃ (Au: 0.4 mol%, Pd: 0.6 mol% with respect to hydrogen acceptor), hydrogen acceptor (1.0 mmol), ethanol (2 mL), room temperature, H₂ (1 atm), 1 h. Yields were determined by GC analysis using *n*-decane as an internal standard.

Table S2 Results of the repeated reuse experiments for the dehydrogenative aromatization of 1a with $2a^a$

Au–Pd/Al ₂ O ₃	Yield of 3aa (%)	Average particle size (nm)
Fresh	76	2.9
First reuse	67	3.8
Second reuse	49	4.3

^{*a*} The reaction was carried out under the conditions described in Fig. 3.

Fig. S1 TEM images of Au–Pd/Al₂O₃ and the size distributions of bimetallic nanoparticles. (a) Fresh (before the first use) (average: 2.9 nm, σ : 1.0 nm). (b) After the first use (average: 3.8 nm, σ : 1.0 nm). (c) After the second use (average: 4.3 nm, σ : 1.8 nm). The size distributions were determined using 200 particles.

Fig. S2 Cyclohexanones and amines used in this study.

Fig. S3 TEM image of Au/Al₂O₃ and the size distribution of Au nanoparticles (average: 3.2 nm, σ : 1.1 nm). The size distribution was determined using 200 particles.

Fig. S4 TEM image of Pd/Al₂O₃ and the size distribution of Pd nanoparticles (average: 2.2 nm, σ : 0.5 nm). The size distribution was determined using 200 particles.

Fig. S5 (a) TEM image of Au–Pd/TiO₂ and the size distribution of bimetallic nanoparticles (average: 1.8 nm, σ : 0.4 nm). The size distribution was determined using 200 particles. (b) HAADF-STEM image of Au–Pd/TiO₂. (c) EDS images (Au element) of Au–Pd/TiO₂. (d) EDS images (Pd element) of Au–Pd/TiO₂. Green: Au, Blue: Pd.

Fig. S6 TEM image of Au–Pd/Al₂O_{3(Pd→Au)} and the size distribution of bimetallic nanoparticles (average: 3.5 nm, σ : 1.3 nm). The size distribution was determined using 200 particles.

Fig. S7 (a) TEM image of Au–Pd/Al₂O_{3(Au→Pd)} and the size distribution of bimetallic nanoparticles. Au–Pd/Al₂O_{3(Au→Pd)} has wide size distribution (average: 6.3 nm, σ : 4.1 nm). The size distribution was determined using 200 particles. (b) HAADF-STEM and EDS images and cross-sectional compositional line profiles of large nanoparticles consisting of Au_{core}–Pd_{shell}. (c) HAADF-STEM and EDS images and cross-sectional compositional line profiles of large nanoparticles of large nanoparticles consisting of large nanoparticles consisting of large nanoparticles consisting of palladium. (d) HAADF-STEM and EDS images of small nanoparticles consisting of palladium. Green: Au, Red: Pd.

Fig. S8 XPS spectra of (a) $Au-Pd/Al_2O_3$ and (b) Au/Al_2O_3 around Au 4f components. The two peaks were attributed to Au $4f_{7/2}$ (around 83.0 eV) and $4f_{5/2}$ (around 87.0 eV). $Au-Pd/Al_2O_3$ exhibited negative shifts in the Au 4f binding energies in comparison with Au/Al_2O_3 , suggesting the electron-transfer from palladium to gold atoms by alloying. Such phenomena have frequently observed for Au-Pd alloy nanoparticle catalysts (for example, see ref. 10).

Scheme S1. Proposed reaction pathway for our recently reported Au–Pd/Al₂O₃-catalyzed dehydrogenative aromatization system from cyclohexylamines (see ref. 9). Initially, aerobic dehydrogenation of cyclohexylamine proceeds to give cyclohexylimine (step 1). Then, nucleophilic addition of another cyclohexylamine molecule to the cyclohexylimine intermediate takes place to afford *N*-cyclohexylidenecyclohexylamine (step 2). Finally, disproportionation and/or aerobic dehydrogenation of the *N*-cyclohexylidenecyclohexylamine proceeds to give the corresponding *N*-cyclohexylamine as the final product with the concurrent formation of cyclohexylamine and dicyclohexylamine (step 3). These amines formed in the aromatization step can again aerobically be oxidized, and thus it can be considered that O_2 is formally the terminal oxidant (step 4).