Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Bio-catalytic asymmetric Mannich reaction of ketimines using

wheat germ lipase

Ling-Ling Wu, Yang Xiang, Da-Cheng Yang, Zhi Guan* and Yan-Hong He*

Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering,

Southwest University, Chongqing 400715, PR China

Fax: +86-23-68254091; E-mails: guanzhi@swu.edu.cn (for Z. Guan); heyh@swu.edu.cn (for Y.-H. He)

Table of contents

1. Materials	2
2. General methods	2
3. Synthesis of 3-substituted-2 <i>H</i> -1,4-benzoxazines.	2
4. Characterization of Mannich products.	3
5. ¹ H NMR, ¹³ C NMR and HPLC spectra for Mannich products	10
6. References	42

1. Materials

Lipase from wheat germ, Type I [lyophilized powder, 75% protein(Biuret), L-3001-5G, Lot # SLBG5523V, 7 units/mg protein, One unit will hydrolyze 1.0 microequivalent of fatty acid from a triglyceride in 1 h at pH 7.4 at 37 °C], Phosphatase acid from wheat germ, Type I (P3627-1G, 021M7014V, 0.5 units /mg solid, One unit will hydrolyze 1.0 micromole of p-nitrophenyl phosphate in 1 min at pH 4.8 at 37 °C), Lipase from porcine pancreas, Type II (L3126-25G, Batch # 020M1589, 300 units/mg solid, one unit will hydrolyze 1.0 microequivalent of fatty acid from triacetin in 1 h at pH 7.4 at 37 °C), Proteinase from Aspergillus melleus, Type XXIII (P4032-25G, Lot # 080M1456V, 4 units/mg solid, One unit will hydrolyze casein to produce color equivalent to 1.0 µmole (181 µg) of tyrosine per minute at pH 7.5 at 37°C), and Papain from *Carica pagava* (76220-25G, Lot # BCBD3116V, 3 units/mg solid, One unit corresponds to the amount of enzyme which hydrolyzes 1 mol Nbenzoyl-L-arginine ethyl ester (BAEE, Fluka No. 12880) per minute at pH 6.2 at 25 °C) were purchased from Sigma-Aldrich, Shanghai, China. Nuclease p1 from Penicillium citrinum (EC 3.1.30.1, 5 U/mg, One unit of enzyme activity was defined as the amount of enzyme that produced an increase in the optical density of 1.0 in 1 min at 260 nm.) was purchased from Guangxi Nanning Pangbo Biological Engineering Co. Ltd. (Nanning, China). Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification.

2. General methods

Reactions were monitored by thin-layer chromatography (TLC) with Haiyang GF 254 silica gel plates (Qingdao Haiyang chemical industry Co Ltd, Qingdao, China) using UV light and vanillic aldehyde as visualizing agents. Flash column chromatography was performed using 200-300 mesh silica gel at increased pressure. ¹H NMR spectra and ¹³C NMR spectra were respectively recorded on 600 MHz and 150 MHz NMR spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the internal standard, and coupling constants (*J*) were reported in Hz. The enantiomeric excesses (ee) of Mannich products were determined by chiral HPLC analysis performed using Chiralpak AD-H, Chiralpak IC and Chiralcel OD-H (Daicel Chiral Technologies CO., LTD.; Shanghai, China). Absolute configurations of the products were determined by comparing with the known chiral HPLC analysis. All the Mannich products are known compounds.

3. Synthesis of 3-substituted-2H-1,4-benzoxazines.

3-Substituted-2*H*-1,4-benzoxazines were synthesized following the procedure described in the literature.^[1]

$$R \xrightarrow{O} Br + X_{II} \xrightarrow{OH} OH \underbrace{n-Bu_4NHSO_4 (1-10 \text{ mol}\%)}_{20\% \text{ K}_2\text{CO}_3 (aq.), \text{ CH}_2\text{Cl}_2} \times \underbrace{X_{II} \xrightarrow{O}}_{N} R$$

To a round bottom bottle were added the appropriate 2-aminophenol (3 mmol), CH_2Cl_2 (20 mL), 20% aqueous K_2CO_3 solution (20 mL) and *n*-Bu₄NHSO₄ (1-10 mol%). Substituted 2bromoacetophenone was dissolved in 5 mL CH_2Cl_2 and added dropwisely to the reaction mixture. Then the reaction mixture was stirred at room temperature and monitored by TLC. After the consumption of the starting materials, organic layer was washed by water (30 mL) and brine (20 mL), dried over anhydrous Na₂SO₄. The solvent was removed in vacuo and the crude product was purified by column chromatography using petroleum ether and EtOAc as eluent to obtain the corresponding benzoxazines (1).

4. Characterization of Mannich products.

(S)-1-(3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3a)^[2]: $R_f = 0.21$ (PE/EtOAc, 10:1); 49% yield, 87% ee; $[\alpha]^{20}_D = +167.1$ (*c* 0.96, CHCl₃); Colourless semisolid; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.44$ (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.25 (dd, J = 13.0, 5.6 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 6.67 (t, J =7.6 Hz, 1H), 5.27 (br, 1H), 3.97 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.35 (d, J = 17.8Hz, 1H), 3.10 (d, J = 17.8 Hz, 1H), 2.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.6$, 142.7, 141.4 , 132.8, 128.7, 127.5, 125.6, 122.2, 118.6, 116.5, 116.1, 73.9, 55.2, 47.2, 31.7; HPLC (Chiralcel AD-H column, hexane/iPrOH = 98/2, 0.8 mL/min, 254 nm): t₁ = 21.7 min (*S*), t₂ = 23.9 min (*R*).

(S)-1-(3-(p-tolyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3b)^[2]: $R_f = 0.28$ (PE/EtOAc, 5:1); 54% yield, 83% ee; $[\alpha]^{20}_D = + 182.8$ (*c* 0.91, CHCl₃); Colourless oil; ¹H NMR (600 MHz, CDCl₃): ¹H NMR (600 MHz, CDCl₃): $\delta = 7.32$ (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.83 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 7.2 Hz, 1H), 6.75 - 6.72 (m, 1H), 6.66 (td, J = 8.0, 1.3 Hz, 1H), 5.24 (br, 1H), 3.96 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.33 (d, J = 17.7 Hz, 1H), 3.09 (d, J = 17.7 Hz, 1H), 2.31 (s, 3H), 2.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.6$, 142.7, 138.4, 137.1, 132.9, 129.4, 125.5, 122.1, 118.5, 116.5, 116.0, 73.9, 55.0, 47.2, 31.7, 20.92; HPLC (Chiralcel OD-H column, hexane/iPrOH 90/10, 0.8 mL/min, 254 nm): t₁= 9.9 min (*R*), t₂ = 11.4 min (*S*).

(S)-1-(3-([1,1'-biphenyl]-4-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3c)^[2]: $R_f = 0.25$ (PE/EtOAc, 5:1); 31% yield, 95% ee; $[\alpha]^{20}_D = +190.2$ (*c* 0.74, CHCl₃); White solid; m.p. 121.8-122.4 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.56$ (dd, J = 7.8, 6.0 Hz, 4H), 7.49 (d, J = 8.4Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 6.85 (t, J = 7.9 Hz, 1H), 6.81 (d, J = 7.9Hz, 1H), 6.76 (dd, J = 7.8, 1.0 Hz, 1H), 6.68 (t, J = 8.1 Hz, 1H), 5.31 (br, 1H), 4.01 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.38 (d, J = 17.8 Hz, 1H), 3.13 (d, J = 17.9 Hz, 1H), 2.06 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.6$, 142.7, 140.5, 140.5, 140.3, 132.8, 128.80, 127.5, 127.4, 127.1, 126.1, 122.2, 118.7, 116.6, 116.1, 73.9, 55.1, 47.3, 31.7; HPLC (Chiralcel AD-H column, hexane/iPrOH = 90/10, 0.8 mL/min, 254 nm): t₁ = 17.6 min (*S*), t₂ = 21.2 min (*R*).

(S)-1-(3-(naphthalen-2-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3d)^[2]: $R_f = 0.20$ (PE/EtOAc, 5:1); 20% yield, 85% ee; $[\alpha]^{20}_D = +153.4$ (*c* 0.26, CHCl₃); White solid; m.p. 129.1-130.2 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.92$ (d, J = 1.3 Hz, 1H), 7.84 -7.79 (m, 3H), 7.54 (dd, J = 8.6, 1.9 Hz, 1H), 7.48 -7.43 (m, 2H), 6.87 (td, J = 7.8, 1.3 Hz, 1H), 6.81 (dd, J = 7.9, 1.4 Hz, 2H), 6.69 (td, J = 7.9, 1.5 Hz, 1H), 5.41 (br, 1H), 4.06 (AB quartet, $\Delta \delta_{AB} = 0.036, J_{AB} = 10.8$ Hz, 2H), 3.47 (d, J = 17.8 Hz, 1H), 3.18 (d, J = 17.8 Hz, 1H), 2.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.6, 142.7, 138.8, 133.4, 132.8, 132.6, 128.6, 128.2, 127.5, 126.3, 126.2, 125.2, 123.3, 122.2, 118.7, 116.6, 116.2, 73.8, 55.4, 47.2, 31.7; HPLC (Chiralcel AD-H column, hexane/iPrOH 90/10, 0.8 mL/min, 254 nm): t₁ = 16.2 min ($ *S*), t₂ = 18.0 min (*R*).

(S)-1-(3-(4-fluorophenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3e)^[2]: $R_f = 0.20$ (PE/EtOAc, 5:1); 21% yield, 87% ee; $[\alpha]^{20}_D = +157.1$ (*c* 0.73, CHCl₃); White solid; m.p.

107.2-108.5 °C; ¹H NMR (600 MHz, CDCl₃): δ = 7.43 - 7.37 (m, 2H), 7.02 (t, *J* = 8.4 Hz, 2H), 6.83 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 6.67 (t, *J* = 7.5 Hz, 1H), 5.25 (br, 1H), 3.94 (AB quartet, $\Delta \delta AB$ = 0.036, *J*_{AB} = 10.8 Hz, 2H), 3.30 (d, *J* = 17.9 Hz, 1H), 3.09 (d, *J* = 17.9 Hz, 1H), 2.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ = 207.5,162.0 (d, ¹*J*_{C-F} = 245.1 Hz), 142.6, 137.3 (d, ⁴*J*_{C-F} = 2.6 Hz), 132.6, 127.5 (d, ³*J*_{C-F} = 8.0 Hz), 122.3, 118.8, 116.6, 116.1, 115.6(d, ²*J*_{C-F} = 21.3 Hz), 73.8, 54.9, 47.2, 31.7; HPLC (Chiralcel OD-H column, hexane/iPrOH 90/10, 0.8 mL/min, 254 nm): t₁ = 12.6 min (*R*), t₂ = 14.7 min (*S*).

(S)-1-(3-(4-chlorophenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3f)^[2]: $R_f = 0.16$ (PE/EtOAc, 5:1); 17% yield, 86% ee; $[\alpha]^{20}_D = +140.1$ (*c* 0.56, CHCl₃); Colourless semisolid; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.37$ (d, J = 8.7 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 6.83 (dd, J = 10.8, 4.3 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 6.73 (dd, J = 7.8, 1.1 Hz, 1H), 6.70 - 6.66 (m, 1H), 5.25 (br, 1H), 3.93 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.30 (d, J = 18.0 Hz, 1H), 3.10 (d, J = 18.0 Hz, 1H), 2.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.3$, 142.6, 140.2, 133.4, 132.5, 128.9, 127.2, 122.3, 118.9, 116.6, 116.1, 73.6, 55.0, 47.2, 31.6; HPLC (Chiralcel IC column,hexane/iPrOH 95/5, 0.8 mL/min, 254 nm): t₁ = 10.3 min (*R*), t₂ = 11.5 min (*S*).

(S)-1-(3-(4-nitrophenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3g)^[2]: $R_f = 0.10$ (PE/EtOAc, 5:1); 21% yield, 89% ee; $[\alpha]^{20}_D = +156.7$ (*c* 0.39, CHCl₃); Yellow solid; m.p. 126.1-126.6 °C; ¹H NMR (600 MHz, CDCl₃) $\delta = 8.19$ (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.8 Hz, 2H), 6.87 (dd, J = 11.0, 4.1 Hz, 1H), 6.80-6.76 (m, 2H), 6.72- 6.69 (m, 1H), 5.30 (br, 1H), 4.00 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.40 (d, J = 18.3 Hz, 1H), 3.20 (d, J = 18.4 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): $\delta = 206.9$, 149.3, 147.2, 142.6, 132.0, 126.9, 123.9, 122.5, 119.2, 116.7, 116.1, 73.2, 55.5, 47.8, 31.3; HPLC (Chiralcel AD-H column, hexane/iPrOH = 75/25, 0.8 mL/min, 254 nm): t₁ = 13.4 min (*R*), t₂ = 19.0 min (*S*).

(S)-1-(3-(3-chlorophenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3h)^[2]: $R_f = 0.25$ (PE/EtOAc, 5:1); 18% yield, 85% ee; $[\alpha]^{20}_D = +163.8$ (*c* 0.53, CHCl₃); Colourless semisolid; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (s, 1H), 7.24 - 7.15 (m, 3H), 6.77 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 1H), 6.61 (t, *J* = 7.6 Hz, 1H), 5.16 (br, 1H), 3.86 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.06 (d, *J* = 18.1 Hz, 1H), 1.99 (s, 3H); ¹³C NMR (150MHz, CDCl₃): $\delta = 207.3$, 143.8, 142.6, 134.9, 132.4, 130.0, 127.7, 126.2, 123.8, 122.3, 118.9, 116.6, 116.1, 73.6, 55.0, 47.1, 31.6; HPLC (Chiralcel AD-H column, hexane/iPrOH = 90/10, 0.8 mL/min, 254 nm): t_1 = 10.2 min (*S*), t_2 = 12.0 min (*R*).

(S)-1-(3-(3-bromophenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3i)^[2]: $R_f = 0.23$ (PE/EtOAc, 5:1); 20% yield, 82% ee; $[\alpha]^{20}_D = +163.3$ (*c* 0.73, CHCl₃); Colourless semisolid; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.54$ (s, 1H), 7.29 (dd, J = 25.2, 7.8 Hz, 2H), 7.13 (t, J = 7.9 Hz, 1H), 6.77 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 6.67 (d, J = 7.5 Hz, 1H), 6.61 (t, J = 7.6 Hz, 1H), 5.15 (br, 1H), 3.85 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.23 (d, J = 18.1 Hz, 1H), 3.05 (d, J = 18.1 Hz, 1H), 1.98 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.3$, 144.0, 142.6, 132.4, 130.6, 130.3, 129.1, 124.3, 123.1, 122.3, 118.9, 116.6, 116.2, 73.7, 55.0, 47.1, 31.6; HPLC (Chiralcel AD-H column, hexane/iPrOH 90/10, 0.8 mL/min, 254 nm): t₁=10.3min (*S*), t₂= 12.1 min (*R*).

(S)-1-(3-(3,4-dichlorophenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3J)^[2]: $R_f = 0.20$ (PE/EtOAc, 5:1); 21% yield, 86% ee; $[\alpha]^{20}_D = +162.6$ (*c* 0.35, CHCl₃); White solid; m.p. 132.4-134.0 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.55$ (d, J = 2.1 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.25 (dd, J = 8.5, 2.2 Hz, 1H), 6.85 (td, J = 7.9, 1.1 Hz, 1H), 6.81 - 6.78 (m, 1H), 6.74 (dd, J = 7.8, 1.2 Hz, 1H), 6.71 - 6.67 (m, 1H), 5.22 (br, 1H), 3.92 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.8$ Hz, 2H), 3.29 (d, J = 18.2 Hz, 1H), 3.13 (d, J = 18.3 Hz, 1H), 2.07 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.1$, 142.6, 142.2, 133.0, 132.2, 131.7, 130.6, 128.1, 125.2, 122.4, 119.1, 116.7, 116.2, 73.4, 54.8, 47.2, 31.5; HPLC (Chiralcel AD-H column, hexane/iPrOH = 90/10, 0.8 mL/min, 254 nm): t₁ = 11.5 min (*S*), t₂ = 12.5 min (*R*).

(S)-1-(6-methyl-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3k)^[2]: $R_f = 0.30$ (PE/EtOAc, 5:1); 37% yield, 87% ee; $[\alpha]^{20}_D = +183.1$ (*c* 0.49, CHCl₃); Colourless semisolid; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.43$ (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.27 - 7.24 (m, 1H), 6.68 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 0.9 Hz, 1H), 6.48 (d, J = 8.0 Hz, 1H), 5.20 (br, 1H), 3.94 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.7$ Hz, 2H), 3.35 (d, J = 17.7 Hz, 1H), 3.11 (d, J = 17.7 Hz, 1H), 2.24 (s, 3H), 2.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.6$, 141.5, 140.5, 132.4, 131.6, 128.7, 127.4, 125.6, 119.2, 116.6, 116.2, 74.0, 55.3, 47.1, 31.7, 20.8; HPLC (Chiralcel AD-H column, hexane/iPrOH = 90/10, 0.8 mL/min, 254 nm): t₁ = 10.2 min (*R*), t₂ = 11.0 min (*S*).

(S)-1-(7-methyl-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3l)^[2]: $R_f = 0.30$ (PE/EtOAc, 5:1); 27% yield, 83% ee; $[\alpha]^{20}_D = +142.7$ (*c* 0.50, CHCl₃); Colourless semisolid; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.44$ (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.25 (dd, J = 12.3, 4.9 Hz, 1H), 6.64 (d, J = 18.1 Hz, 3H), 5.15 (br, 1H), 3.96 (AB quartet, $\Delta \delta AB = 0.036$, $J_{AB} = 10.7$ Hz, 2H), 3.33 (d, J = 17.7 Hz, 1H), 3.09 (d, J = 17.7 Hz, 1H), 2.22 (s, 3H), 2.02 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.7$, 142.5, 141.5, 130.2, 128.7, 128.4, 127.4, 125.7, 122.7, 117.0, 116.1, 74.0, 55.2, 47.0, 31.7, 20.6; HPLC (Chiralcel AD-H column, hexane/iPrOH = 90/10, 0.8 mL/min, 254 nm): t₁ = 11.6 min (*S*), t₂=12.8 min (*R*).

(S)-1-(6-chloro-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3m)^[2]: $R_f = 0.28$ (PE/EtOAc, 5:1); 17% yield, 89% ee; $[\alpha]^{20}_D = +182.6$ (*c* 0.77, CHCl₃); Light Yellow semisolid; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.40$ (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 7.5 Hz, 2H), 7.5 Hz, 7.

13.2, 5.9 Hz, 1H), 6.72 (d, J = 2.3 Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H), 6.61 (d, J = 2.3 Hz, 1H), 5.40 (br, 1H), 3.95 (AB quartet, $\Delta \delta AB = 0.036$, $J_{AB} = 10.7$ Hz, 2H), 3.35 (d, J = 17.7 Hz, 1H), 3.04 (d, J = 17.7 Hz, 1H), 2.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.4$, 141.3, 140.9, 133.9, 128.8, 127.6, 126.8, 125.5, 118.2, 117.4, 115.4, 73.8, 55.2, 47.2, 31.7; HPLC (Chiralcel AD-H column, hexane/iPrOH = 90/10, 0.8 mL/min, 254 nm): t₁ = 12.2 min (*R*), t₂ = 13.0 min (*S*).

(S)-1-(7-chloro-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3n)^[2]: $R_f = 0.28$ (PE/EtOAc, 5:1); 15% yield, 86% ee; $[\alpha]^{20}{}_D = +171.3$ (*c* 0.36, CHCl₃); Brown red semisolid; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.41$ (d, J = 7.8 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 (dd, J = 12.5, 5.2 Hz, 1H), 6.82 - 6.77 (m, 2H), 6.65 (d, J = 8.0 Hz, 1H), 5.32 (br, 1H), 3.97 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.7$ Hz, 2H), 3.34 (d, J = 17.7 Hz, 1H), 3.03 (d, J = 17.7 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.5$, 143.1, 141.0, 131.6, 128.8, 127.6, 125.6, 122.8, 122.0, 116.7, 116.5, 73.8, 55.2, 47.1, 31.7; HPLC (Chiralcel AD-H column, hexane/iPrOH = 97/3, 0.8 mL/min, 254 nm): t₁ = 18.6 min (*S*), t₂ = 20.1 min (*R*).

(S)-1-(6-fluoro-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one (3o)^[2]: $R_f = 0.33$ (PE/EtOAc, 5:1); 19% yield, 84% ee; $[\alpha]^{20}_D = +156.8$ (*c* 0.76, CHCl₃); Yellow semisolid; ¹H NMR (600 MHz, CDCl₃) δ 7.42 -7.39 (m, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.26 (dd, *J* = 13.1, 5.8 Hz, 1H), 6.69 (dd, *J* = 8.8, 5.3 Hz, 1H), 6.46 (dd, *J* = 9.8, 2.9 Hz, 1H), 6.33 (td, *J* = 8.5, 2.9 Hz, 1H), 5.41 (br, 1H), 3.94 (AB quartet, $\Delta \delta_{AB} = 0.036$, $J_{AB} = 10.7$ Hz, 2H), 3.36 (d, *J* = 17.7 Hz, 1H), 3.06 (d, *J* = 17.7 Hz, 1H), 2.05 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.5$, 158.3 (d, ¹J_{C-F} = 236.0 Hz), 141.0, 138.6, 133.70 (d, ³J_{C-F} = 11.0 Hz), 128.8, 127.6, 125.6, 116.9 (d, ³J_{C-F} = 9.7 Hz), 104.4 (d, ²J_{C-F} = 23.2 Hz), 102.3 (d, ²J_{C-F} = 26.6 Hz), 73.8, 55.3, 47.3, 31.7; HPLC (Chiralcel IC column,hexane/iPrOH = 98/2, 0.8 mL/min, 220 nm): t₁ = 13.0 min (*S*), t₂ = 14.5 min (*R*).

 $(S)-1-(6-nitro-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl)propan-2-one \ (3p)^{[2]}: \ R_f = 1-2 +$

0.18 (PE/EtOAc, 3:1); 16% yield, 73% ee; $[\alpha]^{20}_{D} = +$ 106.3 (*c* 0.36, CHCl₃); Yellow solid; m.p. 136.7-138.1 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.64$ (d, J = 2.6 Hz, 1H), 7.57 (dd, J = 8.8, 2.6 Hz, 1H), 7.39 (dd, J = 15.5, 7.3 Hz, 4H), 7.30 (d, J = 7.1 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 5.72 (br, 1H), 4.09 (s, 2H), 3.39 (d, J = 17.6 Hz, 1H), 2.99 (d, J = 17.6 Hz, 1H), 2.06 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 207.1$, 148.0, 142.8, 140.2, 133.1, 129.0, 127.9, 125.5, 116.4, 114.8, 110.8, 73.9, 55.1, 47.3, 31.7; HPLC (Chiralcel AD-H column, hexane/iPrOH = 75/25, 0.8 mL/min, 254 nm): t₁ =13.4 min (*R*), t₂ = 16.1 min (*S*).

5. ¹H NMR, ¹³C NMR and HPLC spectra for Mannich products

¹H NMR Spectrum (CDCl₃) of **3a**

¹³C NMR Spectrum (CDCl₃) of **3a**

¹H NMR Spectrum (CDCl₃) of **3b**

¹³C NMR Spectrum (CDCl₃) of **3b**

¹H NMR Spectrum (CDCl₃) of **3c**

¹³C NMR Spectrum (CDCl₃) of **3c**

¹H NMR Spectrum (CDCl₃) of 3d

¹³C NMR Spectrum (CDCl₃) of **3d**

 1 H NMR Spectrum (CDCl₃) of **3e**


```
<sup>13</sup>C NMR Spectrum (CDCl<sub>3</sub>) of 3e
```


¹H NMR Spectrum (CDCl₃) of 3f

^{13}C NMR Spectrum (CDCl₃) of 3f

¹H NMR Spectrum (CDCl₃) of **3g**

^{13}C NMR Spectrum (CDCl₃) of 3g

¹H NMR Spectrum (CDCl₃) of **3h**

¹³C NMR Spectrum (CDCl₃) of **3h**

¹H NMR Spectrum (CDCl₃) of **3i**

¹³C NMR Spectrum (CDCl₃) of **3i**

¹H NMR Spectrum (CDCl₃) of 3j

¹³C NMR Spectrum (CDCl₃) of **3**j

¹H NMR Spectrum (CDCl₃) of 3k

¹³C NMR Spectrum (CDCl₃) of **3k**

¹H NMR Spectrum (CDCl₃) of **3**l

¹³C NMR Spectrum (CDCl₃) of **3**l

¹H NMR Spectrum (CDCl₃) of **3m**

¹³C NMR Spectrum (CDCl₃) of **3m**

¹H NMR Spectrum (CDCl₃) of **3n**

¹³C NMR Spectrum (CDCl₃) of **3n**

¹H NMR Spectrum (CDCl₃) of **30**

¹³C NMR Spectrum (CDCl₃) of **30**

¹H NMR Spectrum (CDCl₃) of **3p**

¹³C NMR Spectrum (CDCl₃) of **3p**

HPLC chromatograms

3a (Racemic)

〈峰表〉

No	Retention time	Height	Area	Concentration
1	9.887	657862	11438909	50.008
2	11.364	567228	11435333	49.992
总计		1225090	22874243	XX 66 10 1000 5

No	Retention time	Height	Area	Concentration
1	17.550	205461	5026731	49.804
2	21.208	175138	5066200	50.196
总计	2	380600	10092931	10 (APR 10 (APR 10))

立视[若子-	A 204nm	30 TO 10 TO 10	30 DE 1	20 201-016
No	Retention time	Height	Area	Concentration
1	17.674	SS4S11	21455126	97.370
2	21.901	21440	579525	2.630
总计	A SANCESSING	906251	22034651	o sheatha

3d (Racemic)

No	Retention time	Height	Area	Concentration
1	16.179	477231	10894328	50.545
2	18.019	434080	10659262	49.455
总计		911311	21553590	

No	Retention time	Height	Area	Concentration
1	16.605	348735	7714389	92.298
2	18.391	27240	643707	7.702
总计		375975	8358096	10 (Section 1)

〈峰表〉

No	Retention time	Height	Area	Concentration
1	12.554	262569	5929513	49.575
2	14.699	240665	6031260	50.425
急计	e sevences or	503234	11960773	CALIFORNIA AND

No	Retention time	Height	Area	Concentration
1	12.536	34356	651691	6.790
2	14.616	372672	8945423	93.210
总计		407028	9597114	00 9/24/07-24/84/40

No	Retention time	Height	Area	Concentration
1	10.338	261794	5703682	50.022
2	11.524	268500	5698762	49.978
总计	· · · · · · · · · · · · · · · · · · ·	530293	11402443	Charles and

No	Retention time	Height	Area	Concentration
1	10.661	17061	338849	7.190
2	11.804	212934	4373675	92.810
总计		229994	4712523	an and a state of the second

3g (Racemic)

No	Retention time	Height	Area	Concentration
1	13.408	114868	2210281	49.069
2	18.973	81697	2294149	50.931
总计		196565	4504431	

No	Retention time	Height	Area	Concentration
1	13.441	57011	1100935	5.780
2	18.841	604036	17944897	94.220
总计		661047	19045832	Sec. The contractor

3h (Racemic)

No	Retention time	Height	Area	Concentration
1	10.258	384934	6764712	49.152
2	12.147	364006	6998058	50.848
急计	C C C C C C C C C C C C C C C C C C C	748940	13762770	62 (100.1047) + 108

No	Retention time	Height	Area	Concentration
1	10.317	1025128	16012266	91.100
2	12.215	88700	1564249	8.900
总计		1113828	17576515	50

会测器A 254nm					
No	Retention time	Height	Area	Concentration	
1	11.542	70250	1391073	50.202	
2	12.463	65759	1379879	49.798	
息计		136009	2770952	01 0.0220.000454.50	

3k (Racemic)

〈峰表〉

No	Retention time	Height	Area	Concentration
1	10.152	469142	7598380	49.749
2	11.044	431996	7675170	50.251
总计		901138	15273551	

No	Retention time	Height	Area	Concentration
1	10.217	40182	711219	6.580
2	11.109	511100	10097154	93.420
总计	2	551282	10808373	10 V200 00 00 00 00

31 (Racemic)

No	Retention time	Height	Area	Concentration
1	11.552	145501	2690263	51.233
2	12.800	132660	2560776	48.767
息计		278160	5251040	

No	Retention time	Height	Area	Concentration
1	11.411	651427	11728554	91.657
2	12.635	58589	1067571	8.343
急计		710016	12796125	1. Sec. 20

3m (Racemic)

- ②测器:	A 254nm			
No	Retention time	Height	Area	Concentration
1	12.083	82822	1416433	5.666
2	12.817	1139444	23582833	94.334
总计		1222266	24999266	a service sources

3n (Racemic)

检测器A 254nm					
No	Retention time	Height	Area	Concentration	
1	18.552	182917	5299209	49,636	
2	20.108	163662	5376977	50.364	
总计	8 04160280100	346579	10676186		

No	Retention time	Height	Area	Concentration
1	18.508	469942	12052484	93.698
2	20.065	31229	\$10622	6.302
总计		501171	12863105	

30 (Racemic)

检测器A 220nm					
No	Retention time	Height	Area	Concentration	
1	13.039	189978	4007821	50,844	
2	14.491	166699	3874727	49.156	
息计	s	356677	7882548		

☆测器A 220nm					
No	Retention time	Height	Area	Concentration	
1	12.979	1070271	24346450	92.107	
2	14.530	89790	2086404	7.893	
总计		1160062	26432854	10 243.8528	

☆测器A 254nm					
No	Retention time	Height	Area	Concentration	
1	13.436	191305	3729663	50.299	
2	16.131	163172	3685266	49.701	
总计	2	354477	7414929	Contraction of the	

No	Retention time	Height	Area	Concentration
1	13.410	43971	839312	13.484
2	16.110	236924	5385281	\$6.516
总计		280895	6224592	1. Chickbriddinia

6. References

- [1] a) K. Gao, C. B. Yu, D. S. Wang, Y. G. Zhou, *Adv. Synth. Catal.* 2012, *354*, 483-488; b) Z. P. Chen, M. W. Chen, R. N. Guo, Y. G. Zhou, *Org. Lett.* 2014, *16*, 1406-1409; c) C. J. Ding, Y. Wang, W. W. Zhang, L. Liu, Y. J. Liang, D. W. Dong, *Chem. Res. Chinese Universities*. 2009, *25*, 174-177.
- [2] Y. Q. Wang, Y. Zhang, K. Pan, J. X. You, J. Zhao, Adv. Synth. Catal. 2013, 355, 3381-3386.