High Temperature-Water Gas Shift on Ni-Cu/CeO₂ Catalysts: Effect of Ceria Nano-Crystal Size on Carboxylate Formation

E.T Saw, U. Oemar, M.L. Ang, K. Hidajat and S. Kawi*

Department of Chemical and Bio-molecular Engineering, National University of Singapore, 4

Engineering Drive 4, Singapore 117585

*To whom correspondence should be addressed

Address: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585

Telephone: (65) 6516 6312; Fax: (65) 6779 1936

E-Mail address: <u>chekawis@nus.edu.sg</u>. (S. Kawi)

SUPPORTING INFORMATION

(i) Particle Size Distribution of $CeO_2(1)$

Figure S1 displays the particle size distribution of CeO_2 (1) prepared using the concentration of cerium-nitrate as catalyst precursors of 13.5mM and 2.25g of PVP360K dissolved in deionized water and placed into oven at 140°C for 12 hours. Calcination in air at 700°C for 2hours and the sizes are ranged from 150 to 350nm where the high frequencies of particles sizes are shown within 275-300 nm and the average ceria particle size is 284 nm.

Figure S1. Particle Size Distribution of $CeO_2(1)$

(ii) Particle Size Distribution of $CeO_2(2)$

Figure S2 displays the particle size distribution of CeO_2 (2) prepared using the concentration of cerium-nitrate as catalyst precursors of 22.5mM and 2.25g of PVP360K dissolved in deionized water and put into 140°C for 48hours. Calcination in air at 700°C for 2hours and the sizes are ranged from 400 to 800nm where the high frequencies of particle sizes are shown within 500-600 nm and the average ceria particle size is 550 nm.

Figure S2. Particle Size Distribution of $CeO_2(2)$

(iii) Particle Size Distribution of $CeO_2(3)$

Figure S3 displays the particle size distribution of CeO_2 (2) prepared using the concentration of cerium-nitrate as catalyst precursors of 22.5mM and 2.25g of PVP360K dissolved in deionized water and put into 140°C for 96 hours. Calcination in air at 700°C for 2hours and the sizes are ranged from 800 to 1200nm where the high frequency of particle sizes are shown within 900-1000nm and the average ceria particle size is 946 nm.

Figure S3. Particle Size Distribution of $CeO_2(3)$

(iv) N_2O decomposition over reduced $CeO_2(1)$

Figure S4 displays the TPR₁ and TPR₂ profiles obtained during N₂O decomposition technique. TPR₁ is carried out freshly calcined CeO₂ (1) support upto 700°C for 1 h. Whereas, TPR₂ is carried out after N₂O pulse at 80°C. The amount of H₂ consumed during TPR₂ is 14.08 μ mol/g. This result shows about 0.8% in 11.4% of 5Ni-5Cu/CeO2 (1) catalyst's dispersion is obtained from CeO₂ (1) support.

Figure S4. H_2 -TPR's during N_2O decomposition technique over reduced $CeO_2(1)$

(v) N_2O decomposition over reduced CeO_2 (2)

Figure S5 displays the TPR₁ and TPR₂ profiles obtained during N₂O decomposition technique. TPR₁ is carried out freshly calcined CeO₂ (2) support upto 700°C for 1 h. Whereas, TPR₂ is carried out after N₂O pulse at 80°C. The amount of H₂ consumed during TPR₂ is 3.93 μ mol/g. This result shows about 0.2% in 12.3% of 5Ni-5Cu/CeO₂ (2) catalyst's dispersion is obtained from CeO₂ (2) support.

Figure S5. H_2 -TPR's during N_2O decomposition technique over reduced $CeO_2(2)$

(vi) N_2O decomposition over reduced CeO₂ (3)

Figure S6 displays the TPR₁ and TPR₂ profiles obtained during N₂O decomposition technique. TPR₁ is carried out freshly calcined CeO₂ (3) support upto 700°C for 1 h. Whereas, TPR₂ is carried out after N₂O pulse at 80°C. The amount of H₂ consumed during TPR₂ is 8.23 μ mol/g. This result shows about 0.4% in 15.1% of 5Ni-5Cu/CeO₂ (3) catalyst's dispersion is obtained from CeO₂ (3) support.

Figure S6. H_2 -TPR's during N₂O decomposition technique over reduced CeO₂ (3)

(vii) Bimetallic Particle Size of supported 5Ni5Cu/CeO₂ (1)

Figure S7 displays the particle size distribution of Ni-Cu bimetallic particle size prepared after reduction of $5Ni5Cu/CeO_2$ (1) at $450^{\circ}C$. The bimetallic sizes are ranged from 10-35 nm where the high frequencies of particle sizes are shown within 15-25 nm and the average of bimetallic particle size is 22.4nm.

Figure S7. Particle Size Distribution of $5Ni5Cu/CeO_2(1)$

(viii) Bimetallic Particle Size of supported 5Ni5Cu/CeO₂ (2)

Figure S8 displays the particle size distribution of Ni-Cu bimetallic particle size prepared after reduction of $5Ni5Cu/CeO_2$ (2) at $450^{\circ}C$. The bimetallic sizes are ranged from 10-60 nm where the high frequencies of particle sizes are shown within 20-35 nm and the average particle size is 29.4 nm.

Figure S8. Particle Size Distribution of 5Ni5Cu/CeO₂ (2)

(ix) Bimetallic Particle Size of supported 5Ni5Cu/CeO₂ (3)

Figure S9 displays the particle size distribution of Ni-Cu bimetallic particle size prepared after reduction of $5Ni5Cu/CeO_2$ (3) at $450^{\circ}C$. The bimetallic sizes are ranged from where the high frequencies of particle sizes are shown within 20-35 nm and the average particle size is 28.3 nm.

Figure S9. Particle Size Distribution of 5Ni5Cu/CeO₂ (3)

(x) Bimetallic Particle Size of spent catalyst (5Ni5Cu/CeO₂(3)) for 30 hours of catalytic stability test

Figure S10 displays the particle size distribution of Ni-Cu bimetallic particle size prepared after the stability test of $5Ni5Cu/CeO_2$ (3) at $450^{\circ}C$. The bimetallic sizes are ranged from 20-60 nm where the high frequencies of particle sizes are shown within 25-35 nm and the average of the bimetallic particle size is 33.9 nm.

Figure S10. Particle Size Distribution of spent 5Ni5Cu/CeO₂ (3)