Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Catalytic Dehydrogenation of Isobutane over Ga₂O₃/ZnO Interface:

Reaction Routes and Mechanism

By

Guowei Wang, Chunyi Li,* and Honghong Shan

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China

*Corresponding author: Chunyi Li

State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580, PR China Tel.: +86 532 86981862 E-mail address: chyli@upc.edu.cn, chyli_upc@126.com (C. Li)

List of contents:

Figure S1. Pore size distributions of (a) ZnO and (b) Ga₂O₃.

Figure S2. Dehydrogenation performance of isobutane over $5ZnO-Ga_2O_3$ catalyst with TOS under the reaction conditions of 560 °C, 4 mL catalyst loading, and 210 h⁻¹ gas space velocity.

Figure S3. Cvetanovic curves obtained by isobutane TPD experiments over different samples: (a) Ga₂O₃; (b) ZnO; (c) 5ZnO-Ga₂O₃.

Figure S4. Pyridine IR spectra of Ga₂O₃ and ZnO samples.

 Table S1. Dehydrogenation performance of different catalysts.

Figure S1. Pore size distributions of (a) ZnO and (b) Ga₂O₃.

Figure S2. Dehydrogenation performance of isobutane over $5ZnO-Ga_2O_3$ catalyst with TOS under the reaction conditions of 560 °C, 4 mL catalyst loading, and 210 h⁻¹ gas space velocity.

Figure S3. Cvetanovic curves obtained by isobutane TPD experiments over different samples: (a) Ga₂O₃; (b) ZnO; (c) 5ZnO-Ga₂O₃.

Figure S4. Pyridine IR spectra of Ga₂O₃ and ZnO samples.

Tabl	e S1.	. Dehy	droge	nation	performance	e of	different	catalysts ^a
			<u> </u>					2

Sample	Isobutane conversion, wt%	Isobutene selectivity, wt%	Isobutene yield, wt%
(a) 5 ZnO-Ga ₂ O ₃ (20-60 mesh) ^b	46.4	76.2	35.4
(b) 5ZnO-Ga ₂ O ₃ (20-60 mesh) ^c	62.4	84.7	52.9
5ZnO-Al ₂ O ₃	50.1	84.4	42.3

^a Reaction conditions: 560 °C, 4 mL catalyst loading, and 210 h⁻¹ gas space velocity.

 b Sample (a) was fabricated by separately pressing and grinding ZnO and Ga₂O₃ into 20-60 mesh particles, and then mixing together.

^{*c*} Sample (b) was fabricated by mixing ZnO and Ga₂O₃ together firstly, and then pressing and grinding the mixture into 20-60 mesh particles.