Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for:

Tandem Catalysis versus One-Pot Catalysis:

Ensuring Process Orthogonality in the Transformation of Essential-Oil

Phenylpropenoids into High-Value Products via Olefin Isomerization-Metathesis

Carolyn S. Higman, Marcio Peres de Araujo,[†] Deryn E. Fogg*

Center for Catalysis Research & Innovation and Department of Chemistry, University of Ottawa, Ottawa, ON, Canada, K1N 6N5

Table of Contents

S1. Details of ¹ H NMR quantification of cinnamate and ferulate products	2
S2. Representative GC traces	6
S3. References	7

S1. Details of ¹H NMR quantification of cinnamate and ferulate products.

While conversions of the 1-allylbenzenes **1a–c** and 2-allylbenzenes **2a–c**, and yields of products **2a–c** and **3a**, could be assessed by GC-FID (see Experimental Procedures in main text), the accuracy of GC quantification for **3b**, **3c**, and **3a'**, **3b'**, **3c'** was hampered by poor peak shapes. Yields for these products were instead assessed by ¹H NMR analysis. The ¹H NMR signal assignments were confirmed by comparison to the literature values summarized in Tables S1 and S2 below. Quantification was established by integration of well-isolated signals for the desired products against those for the styrene intermediates (Table S3) and stilbene byproducts (Table S4). A representative ¹H NMR spectrum for the reaction involving transformation of **1b** to **3b** is provided in Figure S1.

Table S1. Literature ¹H NMR data for cinnamate and ferulate methyl esters.

 Table S2. Literature ¹H NMR data for cinnamate and ferulate 2-ethylhexyl esters.

Compound	Reported ¹ H NMR chemical shifts (CDCl ₃)	Ref.
MeO 0	7.64–7.56 (d, <i>J</i> = 16.0 Hz, 1H, Ar- <i>CH</i> =), 7.48–	4
	7.44 (d, <i>J</i> = 8.6 Hz, 2H, Ar- <i>H</i>), 6.90–6.89 (d, <i>J</i> =	
	8.8 Hz, 2H, Ar-H), 6.33–6.25 (d, J = 16.0 Hz,	
Ö	1H, =C <i>H</i> -COOR), 4.10–4.07 (d, <i>J</i> = 5.7 Hz, 2H,	
3a'	-OCH ₂), 3.85 (s, 3H, OCH ₃), 1.63–0.85 (m, 15H,	
	$-C_7H_{15}$)	
	7.60 (d, ${}^{2}J_{\rm HH}$ = 15.8 Hz, 1H), 7.08 (dd, ${}^{3}J_{\rm HH}$ =	5
HO	8.1 Hz, ${}^{4}J_{\rm HH}$ = 2.0 Hz, 1H), 7.04 (d, ${}^{4}J_{\rm HH}$ = 2.0	
MeO 0	Hz, 1H), 6.92 (d, ${}^{3}J_{\rm HH}$ = 8.1 Hz, 1H), 6.29 (d,	
Ö	$^{2}J_{\text{HH}}$ = 15.8 Hz, 1H), 5.88 (s, 1H), 4.11 (dd, $^{3}J_{\text{HH}}$	
3b'	= 6.0 Hz, ${}^{4}J_{\rm HH}$ = 1.7 Hz, 2H), 3.93 (s, 3H), 1.65	
	(m, 1H), 1.48-1.24 (m, 8H), 0.96-0.86 (m, 6H)	

7.58 (d, ${}^{2}J_{\text{HH}} = 15.9$ Hz, 1H), 7.04 (d, ${}^{4}J_{\text{HH}} = 1.7$ 5 Hz, 1H), 7.00 (dd, ${}^{3}J_{\text{HH}} = 8.0$ Hz, ${}^{4}J_{\text{HH}} = 1.7$ Hz, 1H), 6.81 (d, ${}^{3}J_{\text{HH}} = 8.0$ Hz, 1H), 6.27 (d, ${}^{2}J_{\text{HH}} =$ 15.9 Hz, 1H), 6.00 (s, 2H), 4.10 (dd, ${}^{3}J_{\text{HH}} = 5.9$ Hz, ${}^{4}J_{\text{HH}} = 1.5$ Hz, 2H), 1.64 (m, 1H), 1.49-1.22 (m, 8H), 0.97-0.84 (m, 6H)

Table S3. Literature ¹H NMR data for styrene intermediates.

Compound	Reported ¹ H NMR values (CDCl ₃)	Ref.
OMe	7.35 (d, <i>J</i> = 9.0, 2 H, H3), 6.86 (d, <i>J</i> = 8.9, 2 H, H2), 6.66 (dd, <i>J</i> =	6
	17.6 Hz, J = 10.9, 1 H, Ar-CH), 5.62 (dd, J = 17.6, J = 0.6 Hz, 1	
	H, Ar-CH=C H_2 trans), 5.12 (dd, $J = 10.9$, $J = 0.6$ Hz, 1 H, Ar-	
	CH=C H_2 cis), 3.81 (s, 3 H, OC H_3)	
OMe	6.88-6.81 (m, 3H), 6.63-6.54 (m, 1H), 5.68 (s, 1H), 5.71 (d, J=	7
Он	17.56 Hz, 1H), 5.09 (d, <i>J</i> = 10.92 Hz, 1H), 3.84 (3H, s)	
	6.97 (s, 1H), 6.84 (dd, <i>J</i> = 8 Hz, <i>J</i> = 2 Hz, 1H), 6.77 (d, <i>J</i> = 7 Hz,	8
	1H), 6.63 (dd, <i>J</i> = 18 Hz, <i>J</i> = 10 Hz, 1H), 5.96 (s, 2H), 5.58 (d, <i>J</i>	
<i>~</i> -	= 18 Hz, 1H), 5.13 (d, J = 10 Hz, 1H)	

Table S4. Literature ¹H NMR data for stilbene byproducts.

Figure S1. ¹H NMR spectrum (CDCl₃, 300 MHz) for the sequential isomerizationmetathesis of anethole **1a** to cinnamate **3a** using the Grotjahn catalyst [4]PF₆ and metathesis catalyst **HII**, after a total of 6.5 h reaction (0.5 h isomerization, 6 h crossmetathesis). The upper trace shows the diagnostic olefinic region used for quantification. Peaks for **3b** are indicated with a blue box; locations for the styrene and stilbene intermediates are indicated with green and red boxes, respectively.

S2. Representative GC traces

Figure S2. GC-FID trace for isomerization of estragole 1a to anethole 2a promoted by the Grotjahn catalyst [4]PF₆ at 5 min. Solvent front omitted.

Figure S3. GC-FID trace for sequential isomerization-metathesis of anethole 1a to cinnamate 3a using the Grotjahn catalyst [4]PF₆ and HII, after 6.5 h reaction (0.5 h isomerization, 6 h cross-metathesis). Solvent front omitted.

Figure S4. GC-FID trace showing side-products formed during the attempted transformation of 1a to 3a by orthogonal tandem catalysis using catalysts [4]PF₆ and HII. Solvent front omitted.

S3. References

- Z. Zhang, Z. Zha, C. Gan, C. Pan, Y. Zhou, Z. Wang and M.-M. Zhou, J. Org. Chem., 2006, 71, 4339–4342.
- K. S. Putt, V. Nesterenko, R. S. Dothager and P. J. Hergenrother, *ChemBioChem*, 2006, 7, 1916–1922.
- 3. S. R. Angle, I. Choi and F. S. Tham, J. Org. Chem., 2008, 73, 6268–6278.
- 4. T. Monhaphol, B. Albinsson and S. P. Wanichwecharungruang, *J. Pharm. Pharmacol.*, 2007, **59**, 279–288.
- J. A. M. Lummiss, K. C. Oliveira, A. Pranckevicius, A. Santos, E. N. dos Santos and D. E. Fogg, J. Am. Chem. Soc., 2012, 134, 18889–18891.
- 6. S. E. Denmark and C. R. Butler, Org. Lett., 2006, 8, 63–66.
- A. Sharma, R. Kumar, N. Sharma, V. Kumar and A. K. Sinha, *Adv. Synth. Catal.*, 2008, **350**, 2910–2920.
- 8. H. Lebel and C. Ladjel, *Organometallics*, 2008, **27**, 2676–2678.
- 9. A. S. Khartulyari, M. Kapur and M. E. Maier, Org. Lett., 2006, 8, 5833–5836.
- 10. L. Li and N. P. Seeram, J. Agric. Food Chem., 2011, 58, 11673–11679.
- G. Hua, Y. Li, A. M. Z. Slawin and J. D. Woollins, *Dalton Trans.*, 2007, 1477– 1480.