Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supplementary information

The curious effects of integrating bimetallic active centres within nanoporous architectures for acid-catalysed transformations

Matthew E. Potter^a, Danni Sun^b and Robert Raja^{b*}

 ^a Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, USA.
^b School of Chemistry, University of Southampton, Highfield, Southampton, Hants, SO17 1BJ, UK; E-mail:

^a School of Chemistry, University of Southampton, Highfield, Southampton, Hants, SO17 1BJ, UK; E-mail: <u>R.Raja@soton.ac.uk</u>

Table of contents

Structural characterization data			
	Full ICP data	Page S2	
	Full structural parameters	Page S2	
	XRD patterns of Mg, Si and Zn-containing samples	Page S3	
	SEM images	Page S4	
Full catalysis data		Page S7	
	Monometallic systems	Page S7	
	Effect of Si on MgAIPO-5	Page S8	
	Effect of Zn on MgAIPO-5	Page S9	
	Effect of Zn on SiAIPO-5	Page S10	
Mechanistic pathways			

Structural characterisation data

Table S1: Full ICP data

System	Al/wt%	P/wt%	Zn/wt%	Mg/wt%	Si/wt%
AIPO-5	18.1	16.7	-	-	-
MgAIPO-5	15.9	20.6	-	0.85	-
ZnAlPO-5	16.4	21.2	2.11	-	-
SiAlPO-5	19.8	14.7	-	-	1.69
MgZnAlPO-5	17.0	22.9	1.86	0.72	-
MgSiAlPO-5	18.0	14.6	-	0.89	1.70
ZnSiAlPO-5	18.7	15.9	1.33	-	1.66

Table S2: XRD parameters, particle size and surface area summary

System	Optimized XRD parameters for P6cc		Particle size/nm	BET SSA/m ² g ⁻¹	
	a/Å	c/Å			
AIPO-5	13.69	8.43	56.5	295.1	
ZnAlPO-5	13.68	8.34	55.5	165.4	
MgAIPO-5	13.71	8.40	55.5	193.3	
SiAlPO-5	13.70	8.39	54.8	181.9	
MgZnAlPO-5	13.80	8.41	66.3	283.3	
MgSiAlPO-5	13.71	8.39	52.6	168.1	
ZnSiAlPO-5	13.76	8.40	64.2	236.2	

Figure S1: Powder X-ray diffraction pattern of monometallic AIPO-5 systems

Figure S2: Zoomed XRD pattern of Zn-containing species revealing trace quantities of ZnO hexagonal phase.

Figure S3: SEM image of monometallic MgAIPO-5

Figure S4: SEM image of monometallic ZnAIPO-5

Figure S5: SEM image of monometallic SiAIPO-5

Figure S6: SEM image of bimetallic MgZnAlPO-5

Figure S7: SEM image of bimetallic MgSiAlPO-5

Figure S8: SEM image of bimetallic ZnSiAlPO-5

Full catalysis data

Vapour-phase Beckmann rearrangement - Monometallics

Figure S9: Full catalytic data for the vapour-phase Beckmann rearrangement of cyclohexanone oxime using monometallic AIPO-5 systems. Reaction conditions: WHSV 3.3 hr⁻¹, Helium carrier gas flow 20 ml/min, 0.3 g of catalyst, liquid feed 300g/l of cyclohexanone oxime in methanol, temperature as shown.

Isopropylation of benzene - Monometallics

Figure S10: Full catalytic data for the isopropylation of benzene using monometallic AIPO-5 systems. Reaction conditions: WHSV of 3.5 hr⁻¹, Helium carrier gas of 10 ml/min, feed 6:1 mole ratio of benzene:isopropanol, temperature as shown.

Vapour-phase Beckmann rearrangement - Mg/Si systems

Figure S11: Full catalytic data for the vapour-phase Beckmann rearrangement of cyclohexanone oxime using Mg and Si-containing AIPO-5 systems. Reaction conditions: WHSV 3.3 hr⁻¹, Helium carrier gas flow 20 ml/min, 0.3 g of catalyst, liquid feed 300g/l of cyclohexanone oxime in methanol, temperature as shown

Isopropylation of benzene - Mg/Si systems

Figure S12: Full catalytic data for the isopropylation of benzene using Mg and Si-containing AIPO-5 systems. Reaction conditions: WHSV of 3.5 hr⁻¹, Helium carrier gas of 10 ml/min, feed 6:1 mole ratio of benzene:isopropanol, temperature as shown.

Vapour-phase Beckmann rearrangement - Mg systems

Figure S13: Full catalytic data for the vapour-phase Beckmann rearrangement of cyclohexanone oxime using Mg-containing AIPO-5 systems. Reaction conditions: WHSV 3.3 hr⁻¹, Helium carrier gas flow 20 ml/min, 0.3 g of catalyst, liquid feed 300g/l of cyclohexanone oxime in methanol, temperature as shown.

Isopropylation of benzene - Mg systems

Figure S14: Full catalytic data for the isopropylation of benzene using Mg-containing AlPO-5 systems. Reaction conditions: WHSV of 3.5 hr⁻¹, Helium carrier gas of 10 ml/min, feed 6:1 mole ratio of benzene:isopropanol, temperature as shown.

Vapour-phase Beckmann rearrangement - Si systems

Figure S15: Full catalytic data for the vapour-phase Beckmann rearrangement of cyclohexanone oxime using Si-containing AIPO-5 systems. Reaction conditions: WHSV 3.3 hr⁻¹, Helium carrier gas flow 20 ml/min, 0.3 g of catalyst, liquid feed 300g/l of cyclohexanone oxime in methanol, temperature as shown.

Isopropylation of benzene - Si systems

Figure S16: Full catalytic data for the isopropylation of benzene using Si-containing AIPO-5 systems. Reaction conditions: WHSV of 3.5 hr⁻¹, Helium carrier gas of 10 ml/min, feed 6:1 mole ratio of benzene:isopropanol, temperature as shown.

Mechanistic pathways

Figure S17: Mechanistic pathway of the Beckmann rearrangement of cyclohexanone oxime.

Figure S18: Mechanistic pathway of the isopropylation of benzene to cumene.