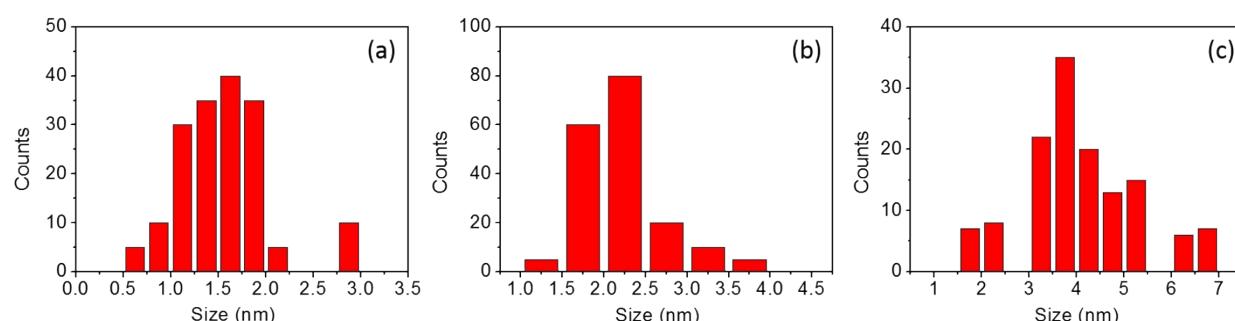


Supporting Information

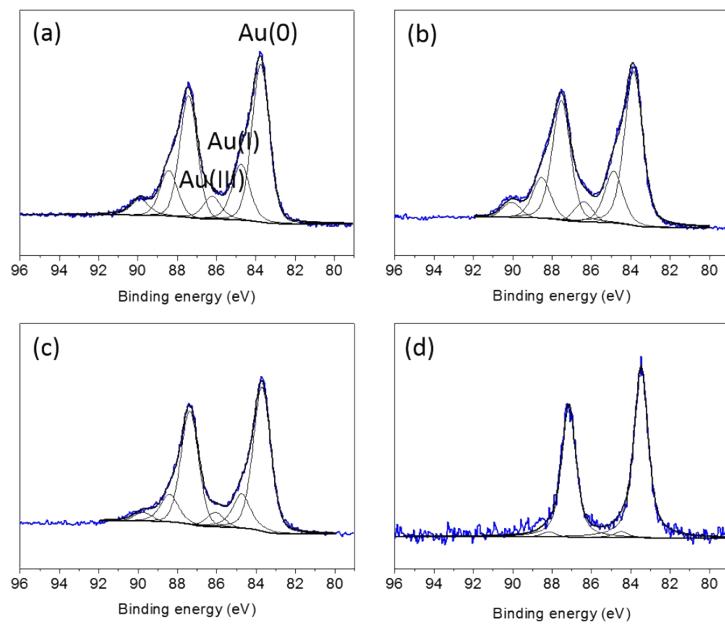
**Production of Acrylic Acid from Biomass-Derived Allyl Alcohol
by Selective Oxidation Using Au/Ceria Catalysts**

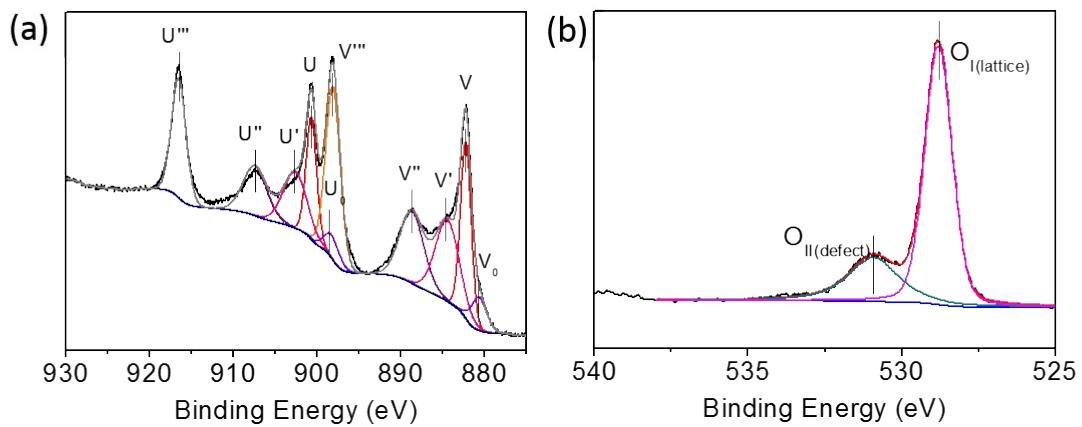

Sungpil Yang^{a†}, Minsu Kim^{b†}, Sungeun Yang^b, Dae Sung Kim^c, Won Jae Lee^c, and Hyunjoo Lee^{b*}

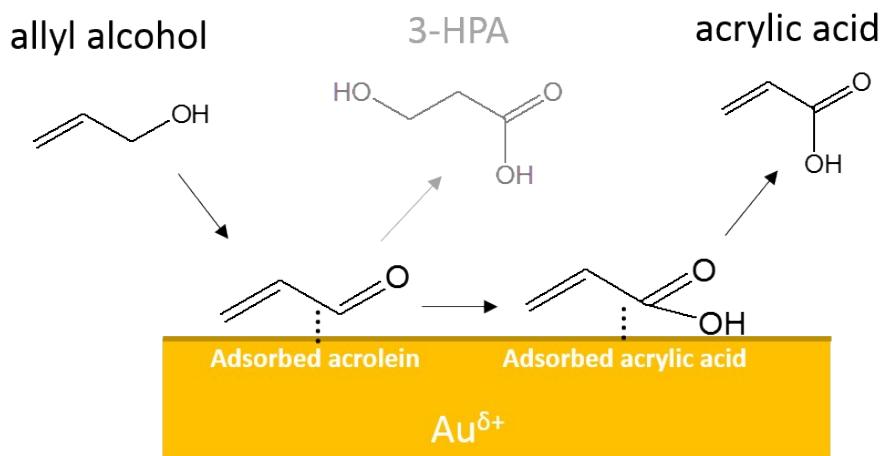
^aDepartment of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Republic of Korea; ^bDepartment of Chemical and Biomolecular Engineering, Korea

Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea;

^cCorporate R&D, LG Chem Research Park, Daejeon 305-738, Republic of Korea.


Additional Data; Figure S1 ~ Figure S5, Table S1


Figure S1. Au nanoparticle size distribution for (a) 1.5, (b) 2.2, and (c) 4.1 nm-sized Au/ceria (DP) catalysts.


† These authors contributed equally.

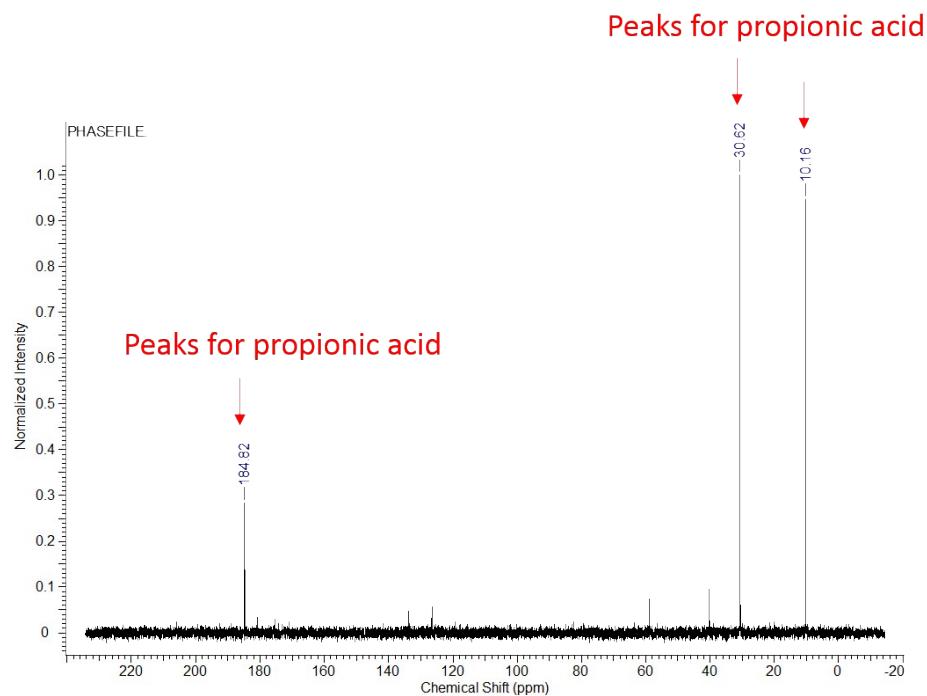

Figure S2. XPS data presenting Au 4f peaks for (a) 1.5 nm Au/CeO₂ (DP), (b) 2.2 nm Au/CeO₂ (DP), (c) 4.1 nm Au/CeO₂ (DP), and (d) 2.7 nm Au/CeO₂ (CD).

Figure S3. XPS data of Au/Ceria (DP) catalysts presenting (a) Ce 3p peaks and (b) O 1s peaks. The ratio of Ce(III) and Ce(IV) was estimated as 19.1% and 80.9% from the ratio of V₀, V' and V, V'', V''', and the ratio of O_{I(lattice)} and O_{II(defect)} was estimated as 72.6% and 27.4%, respectively. Tian's work was used for assigning each peak ^{S1}.

Figure S4. Different pathways for the formation of 3-HPA and acrylic acid.

Figure S5. ^{13}C NMR of the product solution after allyl alcohol oxidation using $\text{Au}_{82.4}\text{Pd}$ /ceria (DP) catalyst. The reaction condition was the same as Au /ceria (DP) catalyst.

Table S1. Allyl alcohol oxidation results when Au-M/ceria (DP) catalysts were used.^a

Catalyst	Conv. (%)	Yield(%)					
		AcA	3-HPA	Propionic acid	3-APA	GA	Others
Au _{82.4} Pd ₁ /CeO ₂ ^b	100	5.2	8.0	64.6	0	0	22.2
Au _{168.8} Pd ₁ /CeO ₂ ^c	100	9.9	15.3	48.3	0	0	26.5
Au _{452.8} Pt ₁ /CeO ₂ ^d	100	35.2	27.3	11.1	2.9	0.9	19.7
Au _{23.6} Cu ₁ /CeO ₂ ^e	94.2	35.1	27.2	7.8	2.8	0.9	23.4

^aThe reaction was performed at 50°C, O₂ 3 bar, 12 hrs, 3 M NaOH, and a mole ratio of allyl alcohol/Au was 4000. ^b0.352 μmol or ^c0.176 μmol of PdCl₂ dissolved in 0.2 M of HCl solution was added together with Au precursor. ^d 0.587 μmol of H₂PtCl₆ was added together with Au precursor. ^e 0.352 μmol of CuCl₂ was added together with Au precursor. The remaining synthetic procedure was the same as the Au/ceria (DP) catalyst. The actual molar ratio of Au versus secondary metal was measured by ICP-MS after the synthesis.

References

S1. Z. M. Tian, X. Xiang, L. S. Xie and F. Li, *Ind. Eng. Chem. Res.*, 2013, 52, 288-296.