Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Fe/γ-Al₂O₃ and Fe-K/γ-Al₂O₃ as Reverse Water-Gas Shift Catalysts

Jason A. Loiland¹, Matthew J. Wulfers¹, Nebojsa S. Marinkovic², and Raul F. Lobo^{1,*}

¹Center for Catalytic Science and Technology, Department of Chemical and Biomolecular

Engineering, University of Delaware, Newark, DE 19716, USA

²Department of Chemical Engineering, Columbia University, New York, NY 10027, USA

Corresponding Author e-mail: lobo@udel.edu

Figure S1. N₂ adsorption isotherm for 10% Fe - 2.5% K/Al₂O₃.

Figure S2. Powder XRD patterns of 4.2% Fe – 3.4% K/Al₂O₃, 4.5% Fe/Al₂O₃ and γ –Al₂O₃.

Figure S3. Elemental mapping images of 4.5% Fe/Al₂O₃. Iron highlighted (green, top left), oxygen highlighted (yellow, top right), and regular SEM image (bottom).

Figure S4. Elemental mapping images of 4.2% Fe – 3.4% K/Al₂O₃. Regular SEM image (top left), oxygen highlighted (yellow, top right), potassium highlighted (red, bottom right), and iron highlighted (green, bottom right).

Figure S5. CO formation rates on 4.2% Fe -3.4% K/Al₂O₃ (left) and 4.5% Fe/Al₂O₃ (right) during experiments in which kinetic parameters were determined with equimolar concentrations of CO₂ and H₂ in the feed. Temperatures are indicated in the figure, and the partial pressures of CO₂ and H₂ were 15 kPa.

Figure S6. Arrhenius plots from conversion of CO₂ on 4.5% Fe/Al₂O₃ and 4.2% Fe - 3.4% K/Al₂O₃. Reaction conditions: T = 723-753 K, $P_{CO2} = 15$ kPa, $P_{H2} = 15$ kPa, $F_{tot} = 75$ sccm.

Figure S7. CO formation rates on 4.5% Fe/Al₂O₃ and 4.2% Fe – 3.4% K/Al₂O₃ while flowing H₂ (open circles) or D₂ (filled circles). Reaction conditions: T = 723 K, P_{CO2} = 15 kPa, P_{H2} or P_{D2} = 15 kPa, F_{tot} = 75 sccm.

Figure S8. Ion currents at m/z = 2 (H₂), 18 (H₂O), and 28 (CO) during H₂/CO₂ switching experiments on 4.2% Fe – 3.4% K/Al₂O₃. Arrows with a label indicate a change in gas composition to the indicated gas. Reaction conditions: T = 773 K, F_{He} = 36 sccm, F_{H2} or F_{CO2} = 4 sccm. The figure is a modification of Figure 2.

Figure S9. Transient response curves for Ar (m/z = 40), CO₂ (m/z = 28, 44), CO (m/z = 28), and H₂O (m/z = 18) during gas switching experiments over Fe-K/Al₂O₃. Gas flow was switched from 10% H₂/He to 10% CO₂/1% Ar/He. Reaction conditions: T = 773 K, total flow rate = 40 sccm.

Figure S10. Diffuse reflectance IR spectra collected *in situ* of 7.7% Fe – 3.4% K/Al₂O₃ after 30 min of CO₂ flow (purple) and after purging the chamber for 30 min with helium. The temperature was 723 K.

Figure S11. XANES spectra collected *in-situ* (left) during a gas switching experiment on 4.5% Fe/Al₂O₃ and fraction of Fe³⁺ (right) over the duration of the experiment. The catalyst was pretreated in H₂, and the H₂ flow was then stopped while CO₂ was added simultaneously. The catalyst was then re-reduced in H₂ after the period in CO₂. $T_{rxn} = 773$ K, P_{CO2} or $P_{H2} = 20$ kPa, $F_{tot} = 10$ sccm.

Figure S12. XANES spectra collected *in situ* (left) during a gas switching experiment on 4.2% Fe – 3.4% K/Al₂O₃ and fraction of Fe³⁺ (right) over the duration of the experiment. The catalyst was pretreated in H₂, and the H₂ flow was then stopped while CO₂ was added simultaneously. The catalyst was then re-reduced in H₂ after the period in CO₂. Reaction conditions: $T_{rxn} = 773$ K, P_{CO2} or $P_{H2} = 20$ kPa, $F_{tot} = 10$ sccm.

Figure S13. XANES spectra collected *in situ* before and during flow of CO₂/H₂ on 4.2% Fe – 3.4% K/Al₂O₃ (left) and fraction of Fe³⁺ determined form XANES spectra over the duration of the experiment (right). $T_{rxn} = 823$ K, $F_{tot} = 10$ sccm.

Figure S14. XANES spectra collected *in situ* before and during flow of CO_2/H_2 on 4.5% Fe/Al₂O₃ (left) and fraction of Fe³⁺ determined form XANES spectra over the duration of the experiment (right). $T_{rxn} = 823$ K, $F_{tot} = 10$ sccm.

Figure S15. Ion currents at m/z = 2 (H₂), 3 (HD), 4 (D₂), and 28 (CO) during flow of 7.5 kPa H₂, 7.5 kPa H₂ + 7.5 kPa D₂, and 7.5 kPa H₂ + 7.5 kPa D₂+15 kPa CO₂ on Fe/Al₂O₃. Arrows with a label indicate a change in gas composition to the indicated gas. Reaction conditions: T = 753 K, F_{tot} = 75 sccm.

Catalyst	Mass Fe Precursor / g	Mass K Precursor / g	Mass Al ₂ O ₃ / g	Nominal Fe Loading / wt %	Nominal K Loading / wt %	Actual Fe Loading / wt %	Actual K Loading / wt %
1Fe 3K	0.22	0.19	2.75	1.05	3.7	0.9	3.5
4Fe	0.994		2.75	4.8		4.5	-
10Fe	1.99		2.75	9.1		9.1	-
8Fe 3K	1.99	0.243	2.75	8.7	4.3	7.7	3.4
5Fe 1K	1.50	0.10	2.75	6.9	1.9	6.7	2.3
4Fe 4K	0.994	0.243	2.75	4.5	4.6	4.2	3.4

 Table S1. Catalyst precursor amounts, nominal weight loadings, and actual weight loadings.