Supporting Information

Mechanistic Insight to Selective Catalytic Reduction of NO by NH₃ over Low-valent Titanium-porphyrin: A DFT Study

Phornphimon Maitarad,^a Jittima Meeprasert,^b Liyi Shi,^a Jumras Limtrakul,^c Dengsong Zhang^a* and Supawadee Namuangruk^b*

^a Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444,

P. R. China

^b National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Pahonyothin Road,

Klong Luang, Pathum Thani 12120, Thailand

^c Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

Supporting Information Details

Table S1 Total energies of all reaction steps over the Ti-porphyrin with low	Page S3
and high spin states based on M06L/6-31G(d,p) (C, N, O, H) LANL2DZ	
(Ti)	
Figure S1-S4 Optimized structures and their relative energies for step 1-4	Page S4-S7
for both low and high spin states	
Figure S5. Full reaction pathway of NH ₃ -SCR of NO over the low spin	Page S8
state (a) and high spin state (b) of Ti-porphyrin catalyst.	
Figure S6. Catalyst regeneration step by NH ₃ reducing agent over the	Page S9
Brønsted site of TiH-porphyrin	
Table S2 Cartesian coordinates of Ti-porphyrin and the transition states of	Page S10-S17
NH ₃ -SCR of NO reaction in low and high spin states of Ti-porphyrin	

Table S1. Total energies of all reaction steps over the Ti-porphyrin with low and high spin states based on M06L/6-31G(d,p) (C, N, O, H) LANL2DZ (Ti)

Low spin	Total energy (au)	Relative energy (kcal/mol)
singlet		
¹ Ti-Por	-1046.469415	0.00
¹ Ti-NH ₃	-1103.105530	-54.92
¹ TS1	-1103.047604	-18.57
¹ TiH-NH ₂	-1103.062580	-27.96
doublet		
NO- ² TiH-NH ₂	-1232.951737	-37.23
² TS2	-1232.947110	-34.33
² TiH-NH ₂ NO	-1232.957085	-40.59
² TS3	-1232.926783	-21.57
² TiH-NHNOH	-1233.008607	-72.92
² TS4	-1232.996984	-65.62
² TiH-N ₂ -H ₂ O	-1233.013784	-76.16
² TiH-H ₂ O	-1123.497923	-75.46
¹ TiH-Por	-1047.042187	-47.40
High Spin		
triplet		
³ Ti-Por	-1046.482844	0.00
³ Ti-NH ₃	-1103.113733	-60.06
³ TS1	-1103.057248	-24.62
³ TiH-NH ₂	-1103.068147	-31.46
quartet		
NO- ⁴ TiH-NH ₂	-1232.952167	-37.50
⁴ TS2	-1232.937503	-28.30
⁴ TiH-NH ₂ NO	-1232.941243	-30.64
⁴ TS3	-1232.891061	0.85
⁴ TiH-NHNOH	-1232.922410	-70.10
⁴ TS4	-1232.990522	-61.57
⁴ TiH-N ₂ -H ₂ O	-1233.010911	-74.36
⁴ TiH-H ₂ O	-1123.494560	-73.35
³ TiH-Por	-1047.053015	-54.20
Isolated molecule		
¹ NH ₃	-56.5486011	
² NO	-129.8743916	
¹ H ₂ O	-76.4110228	
¹ N ₂	-109.5147356	

<u>Low spin</u>

<u>High spin</u>

Figure S1. Step 1 of NH₃ oxidation over the low and high spin states of Ti-porphyrin.

<u>Low spin</u>

E (kcal/mol) -31.46

Figure S2. Step 2 of NH₂NO intermediate formation over the low and high spin states of Ti-

-28.30

-37.50

-30.64

porphyrin

Figure S3. Step 3 of NHNOH intermediate formation over the low and high spin states of Ti-

porphyrin

Figure S4. Step 4 of NHNOH decomposition to nitrogen and water molecules over the low and high spin states of Ti-porphyrin.

Figure S5. Full reaction pathway of NH₃-SCR of NO over the low spin state (a) and high spin state (b) of Ti-porphyrin catalyst.

Catalyst Regeneration

Figure S6. Catalyst regeneration step by NH₃ reducing agent over the Brønsted site of TiHporphyrin calculated at the high spin state.

Ti-porphyrin catalyst in NH₃-SCR can generate the Brønsted acid site namely TiH after production of H₂O and N₂ molecules. This TiH species could be then regenerated to Tiporphyrin. In literature, it is found that during NH₃-SCR process, NH₃ molecule can adsorb on the Brønsted acid site to produce NH₄⁺ species. ¹⁻³ Thus, in the present work, we have provided a possibility of catalyst regeneration by NH₃ oxidation process; TiH + NH₃ \rightarrow Tiporphyrin + NH₄⁺, as shown in Figure S6. The reaction started with the NH₃ adsorption on the Brønsted acid site of TiH with the adsorption energy -15.66 kcal/mol. Then the NH₃ oxidation process occurred by requiring energy of only 7.02 kcal/mol to form the NH₄⁺ species. Finally, the catalyst is regenerated to Ti-porphyrin which it could continually become Lewis site for new reaction.

References

- 1. G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 1998, 18, 1-36.
- 2. M. Calatayud, B. Mguig and C. Minot, Surf. Sci. Rep., 2004, 55, 169-236.
- 3. R. Yuan, G. Fu, X. Xu and H. Wan, Phys. Chem. Chem. Phys., 2011, 13, 453-460.

Table S2. Cartesian coordinates of Ti-porphyrin and the transition states of NH₃-SCR of NO reaction in low and high spin states of Ti-porphyrin.

¹**Ti-Por** (Ti-porphyrin at singlet state)

С	0.692806	4.209649	-0.000035
С	-0.692823	4.209655	-0.000063
С	-1.116899	2.867433	-0.000095
N	-0.000018	2.033191	-0.000185
С	1.116875	2.867424	-0.000045
С	4.263148	-0.676562	0.000185
С	4.263147	0.676577	0.000185
С	2.885219	1.112753	0.000130
N	2.045302	0.000005	0.000103
С	2.885221	-1.112742	0.000128
С	-0.692808	-4.209656	-0.000063
С	0.692821	-4.209647	-0.000045
С	1.116886	-2.867421	-0.000049
N	-0.000008	-2.033191	-0.000187
С	-1.116887	-2.867436	-0.000097
С	-4.263142	0.676561	-0.000001
С	-4.263141	-0.676577	0.000000
С	-2.885212	-1.112751	0.000006
N	-2.045294	-0.000005	0.000019
С	-2.885214	1.112740	0.000006
С	2.451319	-2.417999	0.000050
С	-2.451318	-2.418012	-0.000054
С	-2.451328	2.418003	-0.000053
С	2.451309	2.418008	0.000055
Η	-5.116283	-1.346804	-0.000013
Н	-5.116286	1.346787	-0.000014

Н	-1.355462	5.068643	-0.000041
Η	1.355452	5.068631	0.000013
Η	5.116291	1.346801	0.000211
Η	5.116294	-1.346784	0.000210
Η	1.355469	-5.068628	-0.000002
Η	-1.355444	-5.068646	-0.000038
Η	-3.216282	-3.192436	-0.000057
Η	-3.216297	3.192421	-0.000057
Η	3.216277	-3.192428	0.000079
Η	3.216262	3.192443	0.000087
Ti	0.000012	0.000000	0.000023

³**Ti-Por** (Ti-porphyrin at triplet state)

С	-0.685722	-4.247798	-0.000336
С	0.680686	-4.248641	-0.000366
С	1.111042	-2.882915	-0.000788
N	-0.001161	-2.055972	-0.000928
С	-1.114408	-2.881535	-0.000746
С	-4.247945	0.685695	0.001725
С	-4.248759	-0.680654	0.001731
С	-2.883067	-1.110990	0.000400
N	-2.056111	0.001212	-0.000241
С	-2.881737	1.114404	0.000395
С	0.685727	4.247828	-0.000374
С	-0.680682	4.248611	-0.000338
С	-1.110994	2.882865	-0.000752
Ν	0.001263	2.055973	-0.000929

С	1.114456	2.881585	-0.000787
С	4.247923	-0.685687	0.001548
С	4.248736	0.680646	0.001550
С	2.883027	1.110982	0.000271
N	2.056076	-0.001212	-0.000315
С	2.881697	-1.114396	0.000268
С	-2.431776	2.434633	-0.000230
С	2.434685	2.431767	-0.000328
С	2.431808	-2.434643	-0.000331
С	-2.434652	-2.431757	-0.000223
Η	5.105944	1.345763	0.001910
Η	5.104332	-1.351837	0.001906
Н	1.345715	-5.105910	0.000186
Н	-1.351821	-5.104241	0.000246
Н	-5.105970	-1.345766	0.002133
Н	-5.104358	1.351840	0.002121
Η	-1.345747	5.105853	0.000244
Н	1.351789	5.104298	0.000175
Η	3.205156	3.201343	-0.000271
Η	3.201360	-3.205139	-0.000272
Η	-3.201273	3.205185	-0.000127
Η	-3.205068	-3.201389	-0.000119
Ti	-0.000036	0.000000	-0.000226

¹**TS1** (first transition state at singlet state)

С	2.861130	1.242495	-0.121443
С	-0.857546	4.168941	-0.125648
С	0.525780	4.216844	-0.059379
С	0.989692	2.889560	-0.082836
N	-0.095506	2.014320	-0.155821
С	-1.234578	2.815308	-0.180321
С	-4.269465	-0.817382	-0.166658
С	-4.319684	0.532974	-0.271253
С	-2.971249	1.034820	-0.191019
N	-2.094563	-0.044262	-0.025788
С	-2.881560	-1.201721	-0.055925
С	0.814198	-4.160544	-0.206694
С	-0.571450	-4.206852	-0.135604
С	-1.032079	-2.880041	-0.093636
N	0.056854	-2.006506	-0.128421
С	1.192085	-2.807602	-0.196524
С	-2.565541	2.340926	-0.242042
С	-2.389464	-2.481418	-0.065262
С	2.520198	-2.325269	-0.242687
С	2.352874	2.511773	-0.092368
Н	-1.205909	-5.083033	-0.107405
Н	1.503892	-4.994902	-0.235152
Н	5.121081	-1.144002	-0.600756
Н	5.028983	1.534559	-0.540247
Н	1.160377	5.092329	-0.017109
Н	-1.549741	5.001610	-0.141600
Н	-5.193982	1.158793	-0.399832
Н	-5.092589	-1.520229	-0.190380
Ti	-0.132961	-0.002265	0.207578
Н	-3.119281	-3.285061	-0.105905
Н	3.292679	-3.077281	-0.379488
Н	-3.339187	3.099289	-0.321608
Н	3.067867	3.328431	-0.138993

Ν	0.532982	-0.150286	2.113804
Н	0.512753	0.669904	2.711261
Н	0.336812	-0.972444	2.673737
Н	1.629924	-0.037171	1.177478

³TS1 (first transition state at triplet state)

С	-4.225031	-0.684387	-0.428999
С	-4.225059	0.684255	-0.429023
С	-2.896546	1.133922	-0.173415
N	-2.078759	-0.000011	0.035903
С	-2.896497	-1.133996	-0.173381
С	0.713127	-4.209001	-0.148480
С	-0.664215	-4.215718	-0.163843
С	-1.089688	-2.863115	-0.142340
Ν	0.014306	-2.025993	-0.118520
С	1.129816	-2.852050	-0.129422
С	4.299801	0.681937	-0.260204
С	4.299822	-0.681744	-0.260246
С	2.935615	-1.115240	-0.134377
Ν	2.118690	0.000058	-0.025964
С	2.935575	1.115380	-0.134314
С	-0.664374	4.215693	-0.163865
С	0.712963	4.209026	-0.148440
С	1.129698	2.852089	-0.129362
Ν	0.014224	2.025981	-0.118490
С	-1.089802	2.863073	-0.142365
С	2.471064	-2.418034	-0.153427
С	2.470971	2.418150	-0.153325
С	-2.430042	2.430971	-0.175227

С	-2.429946	-2.431031	-0.175167
Н	1.381435	5.060736	-0.155999
Н	-1.325015	5.073148	-0.186802
Н	-5.058884	1.340568	-0.644413
Н	-5.058826	-1.340745	-0.644371
Н	-1.324823	-5.073199	-0.186750
Н	1.381629	-5.060689	-0.156053
Н	5.151249	-1.345289	-0.346792
Н	5.151203	1.345517	-0.346724
Ti	0.131179	-0.000016	0.284833
Н	3.220358	3.202063	-0.224308
Η	-3.180203	3.212060	-0.267822
Н	3.220492	-3.201906	-0.224455
Η	-3.180090	-3.212140	-0.267747
Ν	-0.560256	-0.000118	2.171296
Η	-0.551166	-0.825801	2.760342
Н	-0.551411	0.825497	2.760444
Н	-1.642823	0.000048	1.170874

²TS2 (second transition state at doublet state)

C	-4.069863	1.118/3/	-0.923080
С	-3.531036	2.379380	-0.892493
С	-2.186447	2.298633	-0.443720
N	-1.910292	0.919740	-0.130666
С	-3.091546	0.181088	-0.500563
С	-0.979618	-4.057211	-0.449164
С	-2.244328	-3.516345	-0.437153
С	-2.096604	-2.107371	-0.379674

N	-0.754502	-1.773372	-0.341284
С	-0.061504	-2.973076	-0.416632
С	4.234229	-0.974012	-0.618974
С	3.694518	-2.223069	-0.710508
С	2.270534	-2.085425	-0.564316
Ν	1.958497	-0.750024	-0.405439
С	3.148843	-0.053686	-0.416989
С	1.073600	4.194645	-0.093166
С	2.333726	3.640055	-0.059769
С	2.172513	2.230240	-0.116695
Ν	0.819637	1.911692	-0.129325
С	0.147862	3.125424	-0.149622
С	1.335490	-3.104825	-0.532700
С	3.236487	1.316288	-0.243727
С	-1.242610	3.284176	-0.332024
С	-3.159722	-1.187828	-0.486178
Η	3.287684	4.151363	-0.030374
Η	0.806268	5.243704	-0.099374
Η	-4.002013	3.295988	-1.224127
Η	-5.051864	0.841089	-1.284886
Η	-3.192642	-4.037065	-0.481113
Η	-0.700412	-5.101633	-0.503954
Η	4.211338	-3.163244	-0.857664
Η	5.278866	-0.694689	-0.677150
Ti	0.183996	-0.032687	0.289276
Η	4.232504	1.751372	-0.258098
Η	-1.589550	4.304378	-0.475131
Η	1.710119	-4.119685	-0.636065
Η	-4.142148	-1.619218	-0.660143
N	0.796671	-0.275315	2.273849
Η	1.034478	-1.168670	2.700142
Η	1.224178	0.489055	2.787924
Η	-1.824624	0.858538	0.895899

Ν	-0.874744	-0.073570	2.377389				
0	-1.435516	-1.117641	2.691408				
⁴ TS2 (second transition state at quartet							
state)							

С	-4.069863	1.118737	-0.923080
С	-3.531036	2.379380	-0.892493
С	-2.186447	2.298633	-0.443720
N	-1.910292	0.919740	-0.130666
С	-3.091546	0.181088	-0.500563
С	-0.979618	-4.057211	-0.449164
С	-2.244328	-3.516345	-0.437153
С	-2.096604	-2.107371	-0.379674
N	-0.754502	-1.773372	-0.341284
С	-0.061504	-2.973076	-0.416632
С	4.234229	-0.974012	-0.618974
С	3.694518	-2.223069	-0.710508
С	2.270534	-2.085425	-0.564316
N	1.958497	-0.750024	-0.405439
С	3.148843	-0.053686	-0.416989
С	1.073600	4.194645	-0.093166
С	2.333726	3.640055	-0.059769
С	2.172513	2.230240	-0.116695
N	0.819637	1.911692	-0.129325
С	0.147862	3.125424	-0.149622
С	1.335490	-3.104825	-0.532700
С	3.236487	1.316288	-0.243727
С	-1.242610	3.284176	-0.332024
С	-3.159722	-1.187828	-0.486178
Н	3.287684	4.151363	-0.030374

Η	0.806268	5.243704	-0.099374
Η	-4.002013	3.295988	-1.224127
Н	-5.051864	0.841089	-1.284886
Н	-3.192642	-4.037065	-0.481113
Н	-0.700412	-5.101633	-0.503954
Н	4.211338	-3.163244	-0.857664
Н	5.278866	-0.694689	-0.677150
Ti	0.183996	-0.032687	0.289276
Η	4.232504	1.751372	-0.258098
Н	-1.589550	4.304378	-0.475131
Η	1.710119	-4.119685	-0.636065
Η	-4.142148	-1.619218	-0.660143
N	0.796671	-0.275315	2.273849
Η	1.034478	-1.168670	2.700142
Η	1.224178	0.489055	2.787924
Η	-1.824624	0.858538	0.895899
N	-0.874744	-0.073570	2.377389
0	-1.435516	-1.117641	2.691408

 $^{2}TS3$ (third transition state at doublet state)

С	-3.935334	-1.710253	-0.743752
С	-4.293197	-0.391357	-0.652227
С	-3.162260	0.372415	-0.254933
Ν	-2.081092	-0.547896	0.019471
С	-2.564622	-1.847384	-0.399434
С	1.719998	-3.847224	-0.427872
С	0.394157	-4.200764	-0.463205
С	-0.354682	-2.999325	-0.372648
Ν	0.488220	-1.908061	-0.292259

С	1.767606	-2.428465	-0.332346
С	3.911701	1.761088	-0.647183
С	4.271200	0.451261	-0.576988
С	3.068149	-0.309116	-0.372346
Ν	1.988793	0.546164	-0.298561
С	2.483474	1.823212	-0.476890
С	-1.764772	3.889525	-0.324497
С	-0.439371	4.239537	-0.413930
С	0.311275	3.032832	-0.373776
N	-0.536981	1.947076	-0.254817
С	-1.814332	2.475437	-0.225864
С	2.957697	-1.684028	-0.347261
С	1.710878	2.966654	-0.482345
С	-3.011868	1.732093	-0.240477
С	-1.759559	-2.948481	-0.466285
Н	-0.012457	5.227753	-0.525651
Н	-2.631728	4.537442	-0.349340
Н	-5.245568	0.043518	-0.928299
Н	-4.550273	-2.527727	-1.097986
Н	-0.034763	-5.190706	-0.551705
Н	2.588815	-4.490915	-0.474271
Н	5.259662	0.022840	-0.682914
Н	4.546203	2.621831	-0.816730
Ti	0.137862	0.064116	0.443437
Н	2.229020	3.913620	-0.604680
Н	-3.922850	2.312715	-0.366235
Н	3.879374	-2.255838	-0.410779
Н	-2.254400	-3.891934	-0.683706
N	-0.490509	0.662718	2.325680
Н	0.780624	0.533950	2.589701
Н	-1.385697	0.940611	2.729532
Н	-1.999114	-0.629849	1.038560
N	-0.285611	-0.763637	2.209367

⁴**TS3** (third transition state at quartet state)

	2.00				
			\sim		
С	3.688164	2.199300	-0.800636		
С	4.157004	0.909040	-0.841487		
С	3.114483	0.023500	-0.460837		
N	1.972647	0.824425	-0.095524		
С	2.335746	2.191536	-0.383005		
С	-2.100747	3.799483	-0.034481		
С	-0.813648	4.276002	-0.073434		
С	0.048671	3.151704	-0.136606		
N	-0.697212	1.979407	-0.126788		
С	-2.025415	2.378968	-0.098209		
С	-3.820199	-1.967101	-0.702329		
С	-4.284656	-0.688994	-0.590125		
С	-3.145661	0.162771	-0.381459		
Ν	-2.001699	-0.602788	-0.376056		
С	-2.392382	-1.917474	-0.565808		
С	2.034235	-3.615504	-0.513869		
С	0.737459	-4.076955	-0.555778		
С	-0.111599	-2.941420	-0.505568		
Ν	0.654220	-1.786871	-0.407821		
С	1.971235	-2.202163	-0.430274		
С	-3.147185	1.538294	-0.211703		
С	-1.514998	-2.985168	-0.594232		
С	3.095701	-1.347373	-0.479572		
С	1.443171	3.229662	-0.289434		
Η	0.395920	-5.101719	-0.629159		
Η	2.948803	-4.193452	-0.558342		

Η	5.126787	0.581207	-1.193206
Н	4.218995	3.091469	-1.108129
Н	-0.483340	5.307138	-0.071039
Н	-3.022239	4.366322	0.001267
Η	-5.310877	-0.347291	-0.639258
Η	-4.393720	-2.871498	-0.863306
Ti	-0.174716	-0.001390	0.268654
Н	-1.950644	-3.972780	-0.721541
Η	4.052474	-1.835175	-0.648922
Η	-4.113653	2.034817	-0.213046
Н	1.853563	4.229018	-0.410986
Ν	0.907962	-1.485814	2.756809
Н	-0.414854	-1.438975	2.602185
Н	1.813494	-1.692418	3.173056
Н	1.869634	0.747361	0.927487
N	0.747622	-0.214337	2.382968
0	-0.680955	-0.322530	2.175063

²TS4 (fourth transition state at doublet state)

С	4.073104	0.687331	-1.064028
С	4.074118	-0.680144	-1.064445
С	2.792475	-1.135153	-0.647194
N	1.990925	0.001829	-0.320678
С	2.790779	1.140180	-0.646530
С	-0.788481	4.206557	-0.276355
С	0.577674	4.216011	-0.373998
С	1.004630	2.856890	-0.386565

0	-0.628901	-0.000556	2.106756
Н	-1.535956	-0.005478	2.422853

⁴**TS4** (fourth transition state at quartet state)

С	-4.073748	-0.683270	-1.064099
С	-4.073600	0.684213	-1.064083
С	-2.791541	1.137964	-0.646784
N	-1.990903	0.000239	-0.320819
С	-2.791788	-1.137311	-0.646810
С	0.784655	-4.206947	-0.276888
С	-0.581488	-4.215197	-0.374578
С	-1.007272	-2.855680	-0.386991
N	0.087116	-2.017618	-0.284924
С	1.197149	-2.840754	-0.241359
С	4.365345	0.681282	-0.438115
С	4.365185	-0.682161	-0.438157
С	2.998705	-1.108943	-0.301142
N	2.181853	-0.000187	-0.211404
С	2.998968	1.108375	-0.301076
С	-0.580572	4.215359	-0.374511
С	0.785566	4.206825	-0.276779
С	1.197774	2.840543	-0.241240
N	0.087569	2.017637	-0.284832
С	-1.006638	2.855933	-0.386936
С	2.533807	-2.414548	-0.261628
С	2.534345	2.414079	-0.261508
С	-2.329174	2.432655	-0.573367

Ν	-0.089023	2.017854	-0.284656
С	-1.199765	2.839999	-0.240989
С	-4.364883	-0.684786	-0.437788
С	-4.365896	0.678643	-0.437648
С	-2.999778	1.106602	-0.300733
N	-2.181931	-0.001460	-0.211210
С	-2.998092	-1.110720	-0.301002
С	0.584166	-4.214506	-0.375543
С	-0.781988	-4.207218	-0.277660
С	-1.195403	-2.841344	-0.241852
Ν	-0.085957	-2.017413	-0.285465
С	1.009005	-2.854709	-0.387762
С	-2.536050	2.412611	-0.261217
С	-2.532375	-2.416015	-0.261782
С	2.331179	-2.430227	-0.574209
С	2.327494	2.434506	-0.573002
Н	-1.453529	-5.056215	-0.257292
Н	1.244303	-5.069501	-0.448722
Н	4.874349	-1.336286	-1.381295
Н	4.872332	1.344869	-1.380527
Н	1.236473	5.072070	-0.446735
Н	-1.461365	5.054494	-0.255800
Н	-5.215346	1.344254	-0.526468
Н	-5.213316	-1.351671	-0.526792
Ti	-0.190489	0.000014	0.243830
Н	-3.280589	-3.203405	-0.303895
Н	3.067666	-3.212105	-0.740373
Н	-3.285483	3.198848	-0.303205
Н	3.062793	3.217585	-0.738789
Ν	1.480215	-0.002723	3.414023
Н	0.376129	-0.002516	3.091483
Н	1.906885	0.001290	0.768710
Ν	2.202220	-0.000819	2.486608

С	-2.329713	-2.432110	-0.573414	Н	3.283228	3.200836	-0.303575
Н	1.457883	5.055211	-0.256329	Н	-3.065023	3.215203	-0.739197
Н	-1.239943	5.070962	-0.447455	Н	3.282530	-3.201455	-0.303739
Н	-4.873282	1.341160	-1.380655	Н	-3.065740	-3.214489	-0.739247
Н	-4.873579	-1.340033	-1.380675	Ν	-1.479624	-0.000098	3.413780
Н	-1.241041	-5.070662	-0.447501	Н	-0.375539	-0.000178	3.091647
Η	1.456794	-5.055474	-0.256462	Н	-1.906464	0.000215	0.768639
Η	5.214040	-1.348506	-0.527173	Ν	-2.201308	0.000104	2.486085
Н	5.214360	1.347430	-0.527081	0	0.629518	-0.000213	2.106584
Ti	0.190465	-0.000030	0.243878	Н	1.536689	-0.000242	2.422388