Supplementary material

Role of different coordinated Cu and reactive oxygen species on the highly active Cu-Ce-Zr mixed oxides in NH₃-SCO: A combined *in situ* EPR and O₂-TPD approach

Zhenping Qu^a, ⁺, ^{*}, Zhong Wang^a, ^b, ⁺, Xiaoyu Zhang^a, Hui Wang^a

^a Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences

and Technology, Dalian University of Technology, Dalian, 116024, China

^b Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese

Academy of Sciences, Qingdao, 266101, China

⁺ These authors contributed equally to this work

^{*} To whom correspondence should be addressed. E-mail: <u>quzhenping@dlut.edu.cn</u>. Tel/Fax: 0086-411-84708083

Catalyst Preparation

1. Citric Acid Sol-gel Method (SOL)

The Cu-Ce-Zr mixed oxide was first prepared by citric acid sol-gel method (SOL). The cerium (III) nitrate (Ce(NO₃)₃•6H₂O), zirconium nitrate (Zr(NO₃)₄•5H₂O) and copper nitrate (Cu(NO₃)₂•3H₂O) were mixed in deionized water according to the desired molar ratio. Citric acid was added as the complexing agent with a 1.3:1 ratio of the acid to metal ions including Ce³⁺, Zr⁴⁺ and Cu²⁺. Appropriate polyglycol with the weight of 50% citric acid was added. The blended solution was continuously stirred in a magnetic stirrer and heated at 90°C till transparent gel was formed. The resulting gel was dried at 100°C overnight, and the obtained sample was labeled as Cu-Ce-Zr (SOL).

2. Homogeneous Precipitation Method (HP)

The Cu-Ce-Zr mixed oxide was then prepared by a homogeneous precipitation method using urea as precipitator (HP). The aqueous solutions of $Cu(NO_3)_2 \cdot 3H_2O$, $Ce(NO_3)_3 \cdot 6H_2O$ and $Zr(NO_3)_4 \cdot 5H_2O$ were mixed. Excessive urea aqueous solution was then added into the mixed solution, with a urea/(Cu +Ce + Zr) molar ratio of 10:1. The mixed solution was then heated to 90°C and held there for 24 h with vigorous stirring. After filtration and washing with deionized water, the resulting precipitant was dried at 100°C overnight, and the obtained sample was labeled as Cu-Ce-Zr (HP).

3. Incipient wetness impregnation method (IW)

First, CeO₂, ZrO₂ and Ce-Zr mixed oxide with Ce/Zr molar ratio of 4 were prepared by the surfactant-templated method[1]. Then, the catalyst was prepared by the incipient wetness impregnation method. The Ce-Zr mixed oxide support was added to $Cu(NO_3)_2 \cdot 3H_2O$ aqueous solution, and the obtained sample was denoted as Cu/Ce-Zr (IW); In addition, appropriate quantities of CeO₂ and ZrO₂ power were mixed in an agate mortar to prepare CeO₂-ZrO₂ oxide by mechanical mixing. Subsequently, the CeO₂-ZrO₂ support was added to the Cu(NO₃)₂•3H₂O aqueous solution, and the obtained sample was denoted as Cu/CeO₂-ZrO₂ (IW). Finally, all obtained slurries were stored at room temperature overnight and then dried at 100°C for 12 h.

Figure Captions

Fig. S1 The Madon-Boudart test of NH_3 oxidation at 180°C over Cu-Ce-Zr (SOL) catalyst with different particle size

Fig. S2 The Madon-Boudart test of NH₃ oxidation at 180°C and 200°C over Cu-Ce-Zr (SOL) catalyst with the same particle size (20-40 mesh).

Fig. S3 The TOF of NH₃ oxidation in the presence of H₂O, SO₂ and CO₂.

Fig. S4 Comparison of H₂-TPR patterns of a: fresh Cu-Ce-Zr (SOL), b: after treatment of NH₃ at 230°C over fresh Cu-Ce-Zr (SOL) and c: after treatment of O_2 at 230°C following by step b.

Figure S1

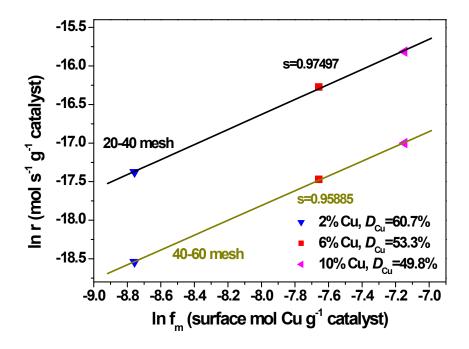
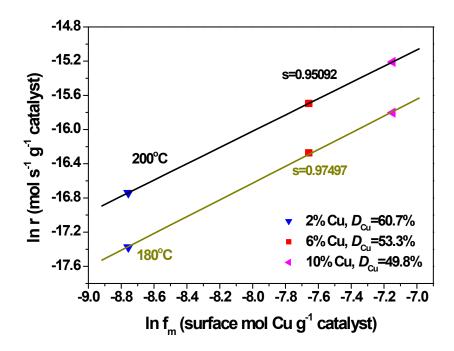



Figure S2

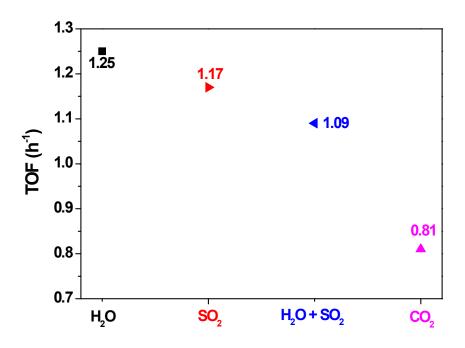
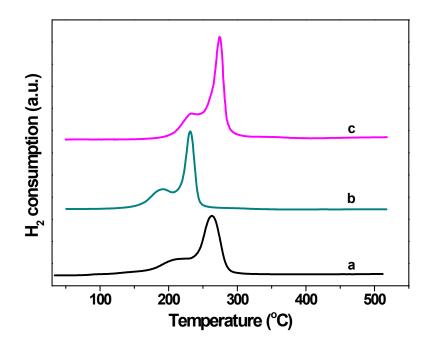



Figure S4

