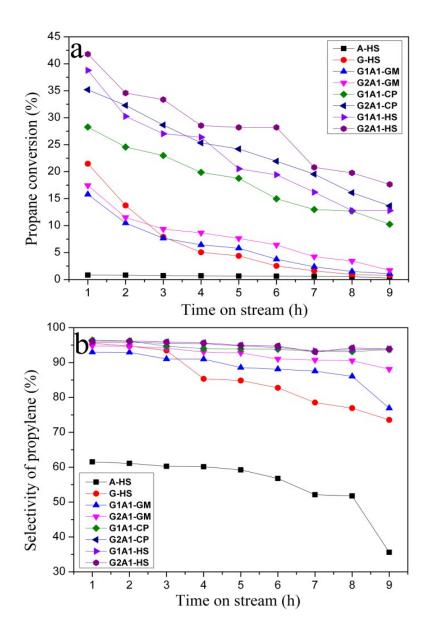
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016


Supporting Information for

Dehydrogenation of propane over hydrothermal synthesized $Ga_2O_3 Al_2O_3$ catalyst in the presence of carbon dioxide

He Xiao, a,b Junfeng Zhang, Peng Wang, b Xiaoxing Wang, Fei Pang, b Zhenzhou Zhang Ab and Yisheng Tan a,c \star

- a. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
- b. University of Chinese Academy of Sciences, Beijing 100049, China;
- c. National Engineering Research Center for Coal-Based Synthesis, Chinese Academy of Sciences,
 Taiyuan 030001, China.

*Correspondence to: Yisheng Tan Prof. E-mail: tan@sxicc.ac.cn. Tel:+86-351-4044287.
Fax:+86-351-4044287

Fig. S1 Propane conversion (**a**) and selectivity of propylene (**b**) as a function of time on stream for as-prepared samples. Reaction conditions: T = 550 °C; P = 100 kPa; $m_{cat.} = 150$ mg; the feed gas mixture $C_3H_8/CO_2/N_2$ with the molar ratio of 1:3:27; total flow rate = 15 cm³·min⁻¹.

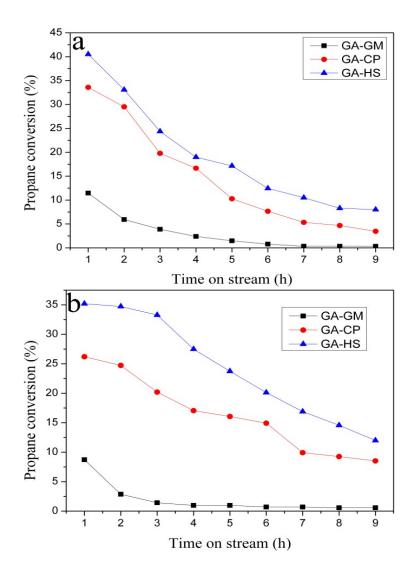


Fig. S2 Propane conversion as a function of time on stream for as-prepared samples in reaction without (a) and with CO_2 (b).

Table S1 Catalytic performance of different Ga₂O₃-Al₂O₃ catalysts in the dehydrogenation of propane in the presence and absence of CO₂.

	Conversion (%)		Selectivity (%)					Yield (%)	
Sample	C_3H_8	CO_2	C_3H_6	C_2H_6	C_2H_4	CH ₄	C_{3+}	C_3H_6	H ₂ /CO
GA-GM ^a	8.7	1.6	95.8	0.3	1.8	1.6	0.5	8.3	0.7
GA-GM ^b	11.4	/	90.8	0.5	4.9	2.9	0.9	10.4	/
GA-CPa	26.2	4.3	95.2	0.2	2.2	1.9	0.5	24.9	0.6
GA-CP ^b	33.6	/	91.2	0.3	3.8	3.5	1.2	30.6	/
GA-HS ^a	35.2	8.4	95.1	0.2	2.1	2.0	0.6	33.4	0.3
GA-HS ^b	40.5	/	92.1	0.4	3.6	2.8	1.1	37.3	/

^a Reaction conditions: T = 550 °C; P = 100 kPa; $m_{cat.} = 150$ mg; the feed gas mixture $C_3H_8/CO_2/N_2$ with the molar ratio of 1:3:27; total flow rate = 15 cm³·min⁻¹; reaction time = 1h.

^b Reaction conditions: T = 550 °C; P = 100 kPa; $m_{cat.} = 150$ mg; the feed gas mixture C_3H_8/N_2 with the molar ratio of 1:30; total flow rate = 15 cm³·min⁻¹; reaction time = 1h.

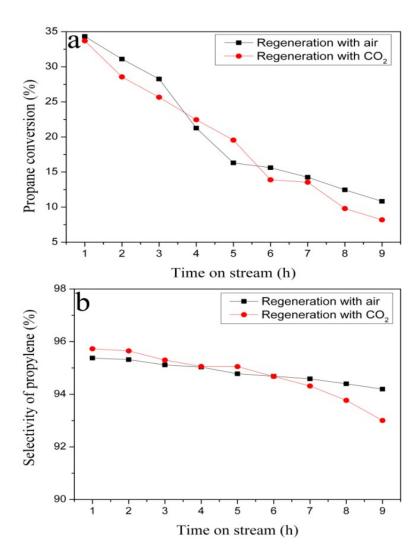


Fig. S3 Propane conversion (a) and selectivity of propylene (b) as a function of time on stream for GA-HS after regeneration with air or CO_2 .

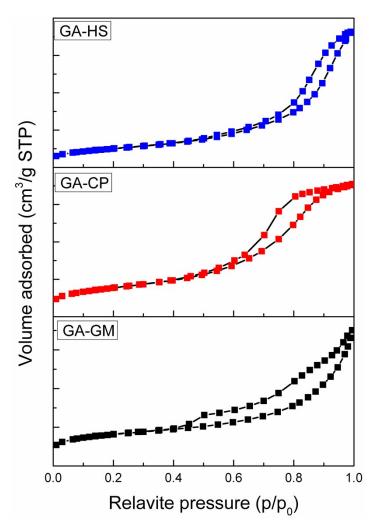


Fig. S4 Nitrogen adsorption–desorption isotherms for different catalysts.

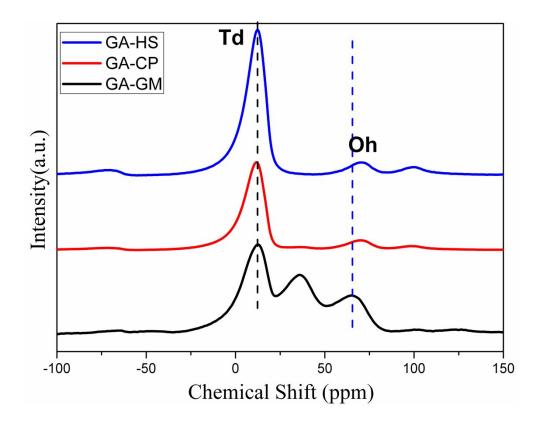


Fig. S5 ²⁷Al MAS NMR profiles for as-prepared catalysts.

Table S2 Al^T percentage for as-prepared catalysts.

Sample	Al ^T (%)			
GA-GM	0.677			
GA-CP	0.913			
GA-HS	0.936			

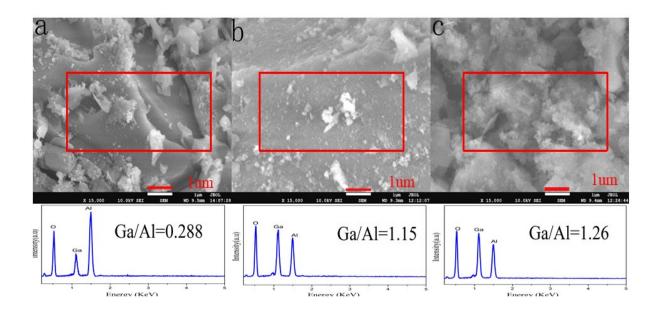


Fig. S6 SEM images of the different as-prepared catalysts: (a) GA-GM; (b) GA-CP; (c) GA-HS.

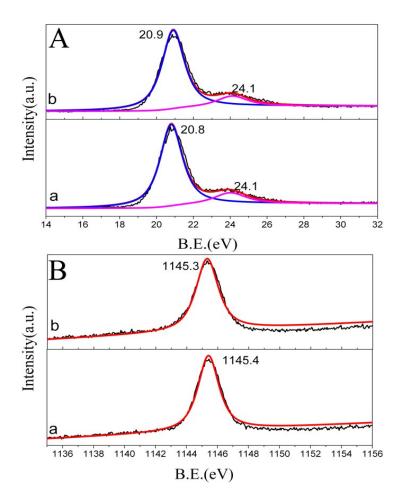
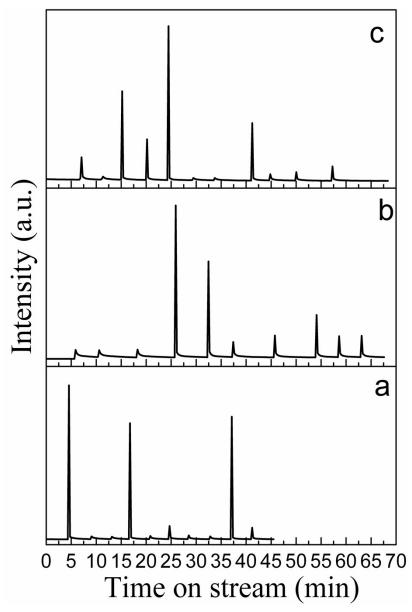
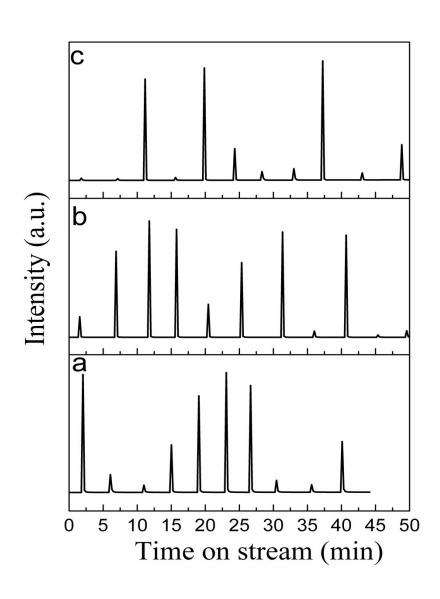




Fig. S7 Ga 3d XPS (A) and Ga $2p_{1/2}$ XPS (B) profiles of spent GA-HS after reactions with (a) and without CO_2 (b).

Fig. S8(a-c) Transient responses of m/z = 44 (C_3H_8) over as-prepared catalysts against a pulsed introduction of C_3H_8 under steady flow of pure Ar. Reaction conditions: catalyst = 100 mg; Ar carrier = 30 mlmin⁻¹; $C_3H_8 = 1$ ml; furnace temperature= 550°C. (a) GA-GM; (b) GA-SS; (c) GA-HS.

Fig. S9(a-c) Transient responses of m/z = 43 (C_3H_8) over as-prepared catalysts against a pulsed introduction of C_3H_8 under steady flow of mixture gas ($10\%CO_2$ and 90%Ar). Reaction conditions: catalyst = 100 mg; CO_2 and Ar carrier = 30 mlmin⁻¹; C_3H_8 = 1 ml; furnace temperature = 550°C. (a) GA-GM; (b) GA-SS; (c) GA-HS.