Electronic Supplementary Information

Reactivity and Mechanism Investigation for Selective Hydrogenation of

2,3,5-Trimethylbenzoquinone on in-situ Generated Metallic Cobalt

Diefeng Su, ^{a⊥} Zhongzhe Wei,^{a⊥} Shanjun Mao,^a Jing Wang,^a Yi Li, ^a Haoran Li, ^a Zhirong Chen, ^a Yong Wang^{*a}

^aAdvanced Materials and Catalysis Group, ZJU-NHU United R&D

Center, Department of Chemistry, Zhejiang University,

Hangzhou 310028, P. R. China

* Corresponding author. Fax: +86-0571-87951895.

E-mail Address: chemwy@zju.edu.cn

 $^{\bot} These authors contributed equally to this work.$

Content

- 1. Catalysts Preparation Method (Page 2)
- 2. Figure S1-S8 (Page 2-6)
- 3. Table S1-S7 (Page 6-11)
- 4. GC-MS results(Page 12-15)

Catalysts Preparation Method.

The $CoO_x@CN$ catalyst was prepared by thermal condensation of GAH, melamine, and Co(CH₃COO)₂•4H₂O. In typical, a mixture of 1g GAH, 40 g melamine and 0.814 g cobalt acetate were dissolved in diluted water and stirred under 80 °C. Then the dried solid were grinded into powder and directly calcined under a N₂ flow of 400 mL min⁻¹. The temperature was increased to 900 °C and held for 1h after the furnace was firstly heated to 600 °C and kept for 1h. Afterwards, the sample was cooled down to room temperature. Finally, the product was ground in the crucible and $CoO_x(a)CN$ was obtained. The $CoO_x(a)CN-800$, and $CoO_x(a)CN-1000$ were prepared under the method except that the pyrolysis temperature was 800 °C and 1000 °C, respectively. In similar, CoO_x@M, CoO_x@G and CN were made from mixtures of cobalt acetate & melamine, cobalt acetate & GAH and melamine & GAH at 900 °C. The way to fabricate $CoO_x@GL$ catalyst was the same as $CoO_x@CN$, except that glucose was used as carbon source. The sample of CoO_x@NCNTs and CoO_x@CN-S were synthesized by applying cobalt nitrate and cobalt sulfate as cobalt source via the same pyrolysis process as $CoO_x(a)CN$. The preparation way of $CoO_x(a)NCNTs$ was in line with paper.¹ The AT-CoO_x@CN catalysts were acquired by acid treatment of CoO_x@CN with 2 M HCl solution for 3 days at 50 °C. Co₃O₄/SiO₂, Co₃O₄/ZrO₂ and Co₃O₄/TiO₂ were all obtained by impregnation method. In typical, 1g SiO₂ and 1.56g cobalt nitrate were dissolved in 15 mL deionized water. Then the mixture was heated at 80 °C with stirring to remove water. After the dried solid was grounded finely, it was roasted in the muffle at 450 °C for 2h. Finally, the corresponding supported cobalt oxide (named as Co₃O₄/SiO₂) was obtained.

Figure S1. TEM images of CoOx@M (a) and CoOx@G (b); BET (c) and Nitrogen content (d) analysis of CoOx@M, CoOx@G and CoOx@CN.

Figure S2. TEM images of $CoO_x@NCNTs$ (a) and $CoO_x@CN-S$ (b); XRD pattern (c) of $CoO_x@NCNTs$ and $CoO_x@CN-S$; Catalytic performance under the same reaction condition (6.7 mmol TMBQ, 1.6 mol% Co to substrate, 15mL i-propanol, 120 °C, 2 MPa H₂, 6 h).

Note: The average size of CoOx@NCNTs and CoOx@CN-S is 12.9 nm and 18.9 nm, respectively.

Figure S3. TEM images of the catalysts pyrolyzed at 800 °C (a) and 1000 °C (b); (c) and (d) are BET and XRD patterns.

Figure S4. TEM characterization (a), XRD plots (b), BET analysis (c) and Nitrogen content (d) of CoOx@GL.

Figure S5. XRD patterns (a) of the three supported cobalt oxide catalysts before and after reaction;TEM pictures (b) of the three supported cobalt oxide catalysts.

Figure S6. (a) XRD and (b) HRTEM image of AT-CoOx@CN

Figure S7. The energy changes as TMBQ closing to Co (111) surface gradually.

Figure S8. Configurations during the first-step hydrogenation of TMBQ.

Note: IS, TS and FS mean Initial State, Transition State and Final State.

_			
	K-point	E_{ads}/eV	$\Delta E_{C2}/eV$
	1×1×1	-0.88	0.16
	2×2×1	-0.67	-
	3×3×1	-0.51	-0.19

Table S1. K-point tests.

 E_{ads} means the adsorption energy of the most stable configuration for TMBQ on Co (111) surface. ΔE_{C2} means the enthalpy change for the first hydrogenation on C2 atom. The energy changes of E_{ads} and ΔE_{C2} under $1 \times 1 \times 1$ and $3 \times 3 \times 1$ k-point meshes are 0.37 and 0.34 eV respectively, with the random error of about 0.03 eV. These results indicate that $1 \times 1 \times 1$ k-point mesh is barely tolerable.

	Specific surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Pore Size (nm)
CoO _x @M	65	0.12	6.5
CoO _x @G	217	0.21	4.8
CoO _x @CN	484	1.57	11.8
CoO _x @NCNTs	254	0.67	9.6
CoO _x @CN-S	272	0.68	8.0
CoO _x @CN-800	531	1.72	11.7
CoO _x @CN-1000	464	1.55	11.3
CoOx @GL	500	1.68	12.1

Table S2. BET analysis.

Note:

1) CoO_x@M and CoO_x@G were made from mixtures of cobalt acetate & melamine and cobalt acetate & GAH, respectively.

2) The cobalt resource of CoO_x @NCNTs and CoO_x @CN-S were cobalt nitrate and cobalt sulfate.

3) CoO_x @CN-800 and CoO_x @CN-1000 prepared at 800 °C and 1000 °C, respectively.

4) CoO_x @GL was synthesized by using glucose as carbon source.

Sample	Co (wt %)
CoO _x @CN-800	33.6
CoO _x @CN-900	31.6
CoO _x @CN-1000	32
AT-CoO _x @CN	10.8
CoO _x @G	44.3
CoO _x @M	43
CoO _x @GL	29.3
Co ₃ O ₄ /SiO ₂	23.1
Co ₃ O ₄ /ZrO ₂	22.7
Co ₃ O ₄ /TiO ₂	23.3

Table S3. ICP results.

Entry	Substrate	Product	Time (h)	Conv.(%)	Yield (%)
1			3.5	99	99
2			2.5	99	99
3	OCH2CH3	OCH2CH3	1.5	99	99
4	OCH2CH3	O OCH ₂ CH ₃	1.5	99	99
5	CN	CN	2.5	99	99
6	NH ₂	NH ₂	1	99	99
7 ^b			2	97	94

Table S4. Hydrogenation of various α,β -unsaturated carbonyls over CoO_x@CN^a

^aReaction conditions: 0.5 mmol reactant, 16 mol% Co to substrate, 15 mL ethanol, 100 °C, 2 MPa H₂; ^bReaction conditions: 0.5 mmol reactant, 16 mol% Co to substrate, 15 mL ethanol, 80 °C, 2 MPa H₂. All the results were determined by GC and GC-MS.

Stable Configurations	Energy (eV)
	-0.76
	-0.88
	-0.87

Table S5. The optimized stable configurations with the corresponding adsorption energies.

Table S6. Energy of the first hydrogen adatom added to TMBQ.

Position	E _{initial} (eV)	$E_{\text{final}}(eV)$	Ea (eV)
C1	0.31	0.70	0.73
C2	0.32	0.47	0.77
C4	0.37	0.76	0.81
C5	0.38	0.49	0.69
O1	0.30	0.57	0.86
02	0.37	0.56	0.69

First Hydrogenated atom	Second Hydrogenated atom	Energy (eV)	Configurations
(2)	C1	0.76	
	O1	0.90	
	C1	1.16	
02	C3	1.30	
_	C5	1.20	

Table S7. Energy of two hydrogen adatom added to TMBQ.

GC-MS results:

4.

5.

7.

Reference

1 Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li and Y. Wang, ACS Catal., 2015, 4783-4789.