Supporting Information

A versatile sol-gel coating for mixed oxides on nanoporous gold and their application in the water gas shift reaction

Junjie Shi¹, Christoph Mahr², M. Mangir Murshed³, Volkmar Zielasek¹, Andreas Rosenauer², Thorsten M. Gesing³, Marcus Bäumer¹, and Arne Wittstock¹*

¹Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University Bremen, Bremen, Germany

²Institute of Solid State Physics, University Bremen, Bremen, Germany

³Solid State Chemical Crystallography, Institute of Inorganic Chemistry and Crystallography/FB02, University Bremen, Bremen, Germany

^{1,2,3}MAPEX Center for Materials and Processes, University Bremen, Bremen, Germany

*Corresponding author: Leobener Strasse UFT, Bremen, Germany, Phone +49 421 218 63400 awittstock@uni-bremen.de

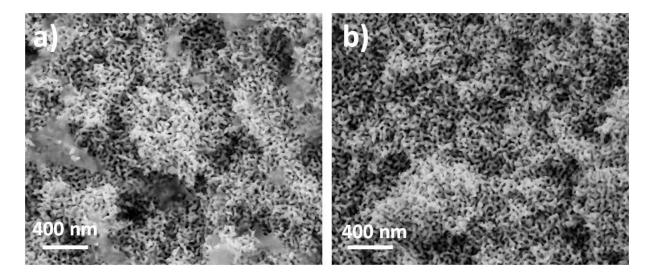


Figure S1: SEM characterization of titania modified nanoporous gold ($TiO_2/npAu$). a) before annealing b) after annealing at 450° C for 2h.

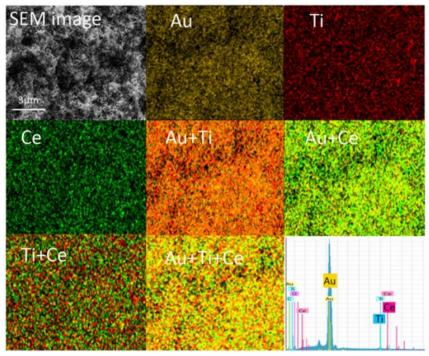


Figure S2: EDX elemental mapping images of Ti-CeO_x mixed oxides modified npAu after annealing at 450°C for 2h.

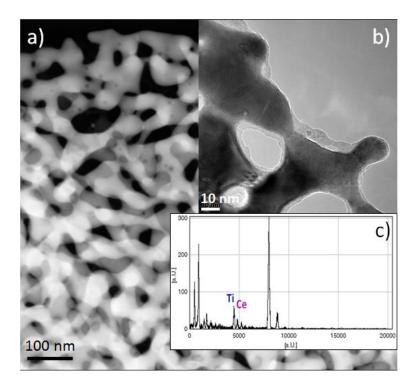


Figure S3: Selected a) STEM b) TEM c) EDX images of the titania-ceria mixed oxides modified nanoporous gold thin film (100 nm) after calcinations at 350°C for 2h.

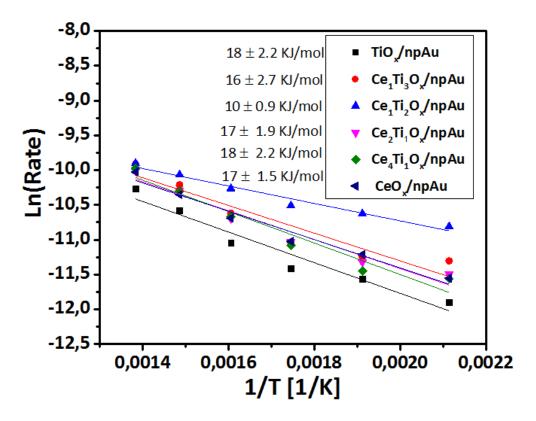


Figure S4. WGS activity (CO + H₂O \rightarrow CO₂ +H₂): Comparison of the Ea values of different mixed Ce-TiO_x and TiO₂, CeO₂ single oxide functionalized np-Au samples (150 µm thick). (5.8 vol% CO, 22.0 vol% H₂O in He, total gas flow 32 mL/min, M_{catal} = 6.0 ± 0.2 mg, space velocity 320,000 mL h⁻¹g⁻¹cat).

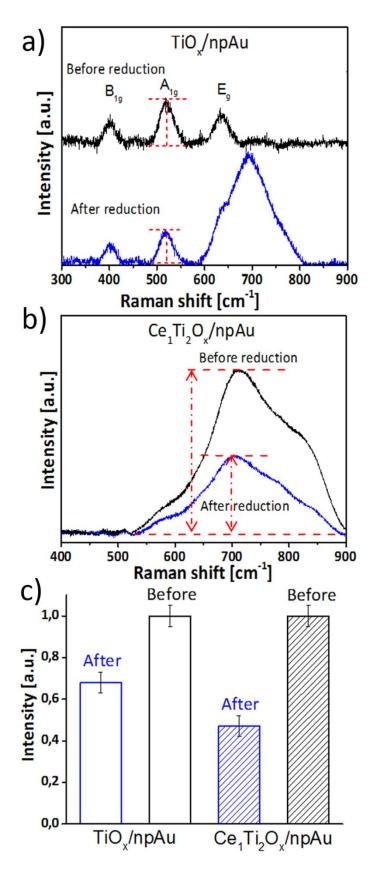


Figure S5: Raman spectra of a) $TiO_x/npAu$, b) $Ce_1Ti_2O_x/npAu$ before and after CO reduction. After treating the sample in O₂ atmosphere at 400 °C for 2h, broke the sample into two pieces. Then took part of the oxidized sample and reduced it under CO atmosphere at 400 °C for 2h. c) Compare the D peak's intensity change before and after CO reduction for $TiO_x/npAu$ and $Ce_1Ti_2O_x/npAu$.

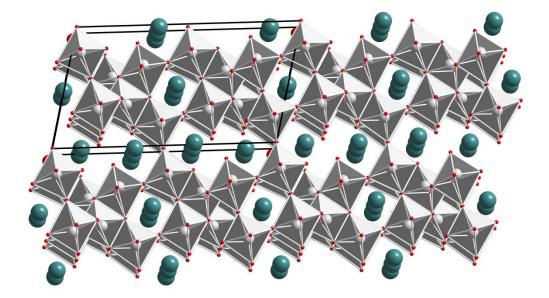


Figure S6: Crystal structure of $Ce_2Ti_2O_7$ (perovskite like structure), the black line represents the unit cell. Color code for atoms: red/oxygen, grey/titanium, green/cerium. (see also Gao et al., *J. Am. Ceram. Soc.*, 2015, 1-5). One can distinguish the layers of TiO₆ octaeders and the cerium atoms occupying interstitial sites.