Submitted to Catal. Sci. Technol.

Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts

F. Jing,^{a,b} B. Katryniok,^{a,b} M. Araque,^{a,b} R. Wojcieszak,^a M. Capron,^a S. Paul,^{a,b} M. Daturi,^c J-M. Clacens,^d F. De Campo,^d A. Liebens,^d F. Dumeignil,^{a,e} and M. Pera-Titus,^{d,*}

^a Unité de Catalyse et de Chimie du Solide, UCCS, UMR 8181 CNRS – Université de Lille, Sciences et Technologies, Cité Scientifique, F-59650, Villeneuve d'Ascq, France

^b Ecole Centrale de Lille, ECLille, F-59655 Villeneuve d'Ascq, France

^c Laboratoire Catalyse et Spectrochimie (LCS), UMR 6506 CNRS – ENSICAEN, F-14000, Caen, France

^d Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3066 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China

^e Institut Universitaire de France, Maison des Universités, 103 Bd St-Michel, Paris, F-75005, France

* Corresponding author: <u>marc.pera-titus-ext@solvay.com</u>

SUPPORTING INFORMATION

LIST OF FIGURES:

Figure S1. Influence of the temperature on the catalytic performance of ZSM-5 zeolites for 1,3-BDO dehydration. <u>Reaction conditions</u>: ambient pressure, time on stream, 8 h; catalyst loading, 200 mg; liquid flowrate, 2.8 mL/h; carrier gas flowrate, 60 mL(STP)/min.

Figure S2. CO₂ MS signal during TGA analysis on the spent ZSM-5 catalysts after reaction at 300 °C: (a) ZSM-5@64, (b) ZSM-5@260, and (c) ZSM-5@260_LR.

Figure S3. C1s spectra of the spent ZSM-5@64 and ZSM-5@260 catalysts after 8 h reaction. Reaction conditions as in Figure S1.

Figure S4. XRD patterns on the fresh (top) and spent (bottom) ZSM-5 catalysts: (a) ZSM-5@30, (b) ZSM-5@64, (c) ZSM-5@106 and (d) ZSM-5@260. The reflections centered at 35.6° , 38.1° , 60.0° and $>65.0^{\circ}$ for the spent s refer to SiC. Reaction conditions as in Figure S1.

Figure S5. ²⁷Al-NMR MAS spectra on the fresh and spent ZSM5@64 and ZSM5@280 catalysts. The asterisks indicate spinning sidebands. Reaction conditions as in Figure S1.

Figure S6. N₂ adsorption/desorption isotherms at 77 K (left) and pore size distribution (right) of the fresh aluminosilicate catalysts. From top to bottom: (a) SA@0.03 and SA@1.90; (b) ZSM-5@30, ZSM-5@64, ZSM-5@106, ZSM-5@260; and (c) Al-SBA@102 and Al-SBA@190.

Figure S7. N_2 adsorption/desorption isotherms at 77 K (left) and pore size distribution (right) of the spent aluminosilicate catalysts. From top to bottom: (a) SA@0.03 and SA@1.90; (b) ZSM-

5@30, ZSM-5@64, ZSM-5@106, ZSM-5@260; and (c) Al-SBA@102 and Al-SBA@190. Reaction conditions as in Figure S1.

Figure S8. Example of deconvoluted NH₃-TPD spectrum for the fresh ZSM-5@30.

Figure S9. FT-IR spectra on the fresh aluminosilicate catalysts before and after pyridine adsorption followed by evacuation at 200 °C. The acronyms B and L after pyridine adsorption refer to Brønsted and Lewis acid sites, respectively.

LIST OF TABLES:

Table S1. SiO₂/Al₂O₃ molar ratios of the different aluminosilicates measured by XRF.

Table S2. BD yield as a function of temperature for 1,3-BDO dehydration over aluminosilicate catalysts*

Table S3. BD/propylene selectivity ratios as a function of temperature for 1,3-BDO dehydration over aluminosilicate catalysts*

Table S4. Sum of selectivities as a function of temperature for 1,3-BDO dehydration over aluminosilicate catalysts*

Table S5. Catalytic performance of aluminosilicate catalysts for 1,3-BDO dehydration at 250 °C.

FIGURES

Figure S1. Influence of temperature on the catalytic performance of ZSM-5 zeolites for 1,3-BDO dehydration. <u>Reaction conditions</u>: ambient pressure, time on stream, 8 h; catalyst loading, 200 mg; liquid flowrate, 2.8 mL/h; carrier gas flowrate, 60 mL(STP)/min.

Figure S2. CO_2 MS signal during TGA analysis on the spent ZSM-5@260_LR catalyst. Reaction conditions as in Figure S1.

Figure S3. C1s spectra of the spent ZSM-5@64 and ZSM-5@260 catalysts after 8 h reaction. Reaction conditions as in Figure S1.

Figure S4. XRD patterns on the fresh (top) and spent (bottom) ZSM-5 catalysts: (a) ZSM-5@30, (b) ZSM-5@64, (c) ZSM-5@106 and (d) ZSM-5@260. The reflections centered at 35.6° , 38.1° , 60.0° and >65.0° for the spent catalysts refer to SiC. Reaction conditions as in Figure S1.

Figure S5. ²⁷Al-NMR MAS spectra on the fresh and spent ZSM5@64 and ZSM5@280 catalysts. The asterisks indicate spinning sidebands. Reaction conditions as in Figure S1.

Figure S6. N₂ adsorption/desorption isotherms at 77 K (left) and pore size distribution (right) of the fresh aluminosilicate catalysts. From top to bottom: (a) SA@0.03 and SA@1.90; (b) ZSM-5@30, ZSM-5@64, ZSM-5@106, ZSM-5@260; and (c) Al-SBA@102 and Al-SBA@190.

Figure S7. N₂ adsorption/desorption isotherms at 77 K (left) and pore size distribution (right) of the spent aluminosilicate catalysts. From top to bottom: (a) SA@0.03 and SA@1.90; (b) ZSM-5@30, ZSM-5@64, ZSM-5@106, ZSM-5@260; and (c) Al-SBA@102 and Al-SBA@190. Reaction conditions as in Figure S1.

Figure S8. Example of deconvoluted NH₃-TPD spectrum for the fresh ZSM-5@30.

Figure S9. FT-IR spectra on the fresh aluminosilicate catalysts before and after pyridine adsorption followed by evacuation at 200 °C. The acronyms B and L after pyridine adsorption refer to Brønsted and Lewis acid sites, respectively.

TABLES

Catalyst	Theoretical molar	Percent	Actual ratio	
Catalyst	ratio SiO ₂ /Al ₂ O ₃	Al	Si	SiO ₂ /Al ₂ O ₃
SA@0.03	0.02	98.42	1.58	0.03
SA@1.79	1.13	52.76	47.24	1.79
ZSM-5@30	23	6.29	93.71	30
ZSM-5@64	50	3.01	96.99	64
ZSM-5@106	90	1.85	98.15	106
ZSM-5@260	280	0.76	99.24	260
Al-SBA-15@102	100	1.93	98.07	102
Al-SBA-15@190	200	1.04	98.94	190

Table S1. SiO_/Al_2O_3 molar ratios of the different aluminosilicates measured by XRF

Catalyst	250 °C	275 °C	300 °C	325 °C	350 °C
SA@0.03	9.0	14	5.4	4.2	6.5
SA@1.79	29	27	33	23	16
ZSM-5@30	29	33	36	37	37
ZSM-5@64	35	45	43	41	36
ZSM-5@106	37	40	45	45	47
ZSM-5@260	43	53	60	53	56
Al-SBA-15@102	57	-	53	-	-
Al-SBA-15@190	57	-	52	-	-

Table S2. BD yield ratios as a function of temperature for 1,3-BDO dehydration over aluminosilicate catalysts^{*}

* <u>Reaction conditions</u>: ambient pressure, time on stream, 8 h; catalyst loading, 200 mg; liquid flowrate, 2.8 mL/h; carrier gas flowrate, 60 mL(STP)/min.

Catalyst	250 °C	275 °C	300 °C	325 °C	350 °C
SA@0.03	0.42	0.27	0.09	0.10	0.14
SA@1.79	1.89	1.08	0.94	0.63	0.62
ZSM-5@30	1.78	1.82	1.59	1.36	1.46
ZSM-5@64	2.17	2.30	1.44	1.26	1.03
ZSM-5@106	2.71	2.31	1.95	1.48	1.50
ZSM-5@260	2.37	2.53	2.48	2.24	1.99
Al-SBA-15@102	2.41	-	1.34	-	-
Al-SBA-15@190	2.42	-	1.30	-	-

Table S3. BD/propylene selectivity ratios as a function of temperature for 1,3-BDO dehydration over aluminosilicate catalysts^{*}

* <u>Reaction conditions</u>: ambient pressure, time on stream, 8 h; catalyst loading, 200 mg; liquid flowrate, 2.8 mL/h; carrier gas flowrate, 60 mL(STP)/min.

Catalyst	250 °C	275 °C	300 °C	325 °C	350 °C
SA@0.03	49	80	81	49	65
SA@1.79	74	66	72	63	45
ZSM-5@30	72	77	81	86	75
ZSM-5@64	73	80	81	81	74
ZSM-5@106	81	79	91	89	87
ZSM-5@260	76	81	92	83	84
Al-SBA-15@102	88	-	97	-	-
Al-SBA-15@190	86	-	97	-	-

Table S4. Sum of selectivities as a function of temperature for 1,3-BDO dehydration over aluminosilicate catalysts^{*}

* <u>Reaction conditions</u>: ambient pressure, time on stream, 8 h; catalyst loading, 200 mg; liquid flowrate, 2.8 mL/h; carrier gas flowrate, 60 mL(STP)/min.

Catalyzat	1,3-BDO	Selectivity (%) ^a			BD productivity	Carbon
Catalyst	conversion (%)	3B1ol	propylene	BD	$(g_{BD}.g_{cat}^{-1}.h^{-1})$	balance (-)
SA@0.03	77	6.8	34	14	0.76	0.74
SA@1.79	88	14	17	33	2.4	0.84
ZSM-5@30	75	8.6	22	39	2.5	0.79
ZSM-5@64	85	9.4	19	42	2.9	0.83
ZSM-5@106	88	12	16	43	3.2	0.77
ZSM-5@260	92	8.3	20	47	3.6	0.81
Al-SBA-15@102	100	4.9	24	57	4.8	0.88
Al-SBA-15@190	100	6.0	23	57	4.8	0.88

Table S5. Catalytic performance of aluminosilicate catalysts for 1,3-BDO dehydration
--

<u>Reaction conditions</u>: T, 250°C; ambient pressure, time on stream, 8 h; catalyst loading, 200 mg; liquid flowrate, 2.8 mL/h; carrier gas flowrate, 60 mL(STP)/min.

^a Additional minor products detected (selectivity <5%): methyl ethyl ketone, methyl vinyl ketone, 2-butanol, 1-butanol and 3-buten-2-ol.