Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting information

The Nature of the Selective Species in

Fe-HZSM-5 for Non-Oxidative Methane Dehydroaromatization

Yungchieh Lai^{1,2} and Götz Veser^{1,2,*}

¹U.S. DOE – National Energy Technology Laboratory, Pittsburgh, PA;

² Department of Chemical Engineering, Swanson School of Engineering, University of Pittsburgh, PA

*gveser@pitt.edu

Figure S1. Powder samples of the three catalysts as synthesized: a) Fe@HZSM-5, b) Fe/HZSM-5, and c) H-(Fe)ZSM-5; and the same catalysts after H_2 -TPR up to 1000°C: d) Fe@HZSM-5, e) Fe/HZSM-5, and f) H-(Fe)ZSM-5.

Figure S2. TEM for commercial Fe₂O₃ NPs.

Figure S3. TEM images with different magnifications for the precursor of Fe@HZSM5 catalyst "Fe@silica". While the structure of the silica matrix is fundamentally different from that of the HZSM-5 zeolite, the embedded Fe NPs are identical to those after conversion.

Figure S4. NH₃-TPD profiles for i) Fe@HZSM-5, ii) H-(Fe)ZSM-5 iii) Fe/HZSM-5, and iv) parent HZSM-5.

Figure S5. Selectivity towards higher hydrocarbons and coke for the three Fe-HZSM-5 catalysts at 700°C. GHSV: 3750 cc/g/h, calculated from a carbon balance at each time point. Note that while the experimental set-up did not allow detection of higher hydrocarbons, quantification of the carbon formation at the end of each experimental run (see table 3 in the main paper) suggests that the majority of the combined selectivity shown in the graph is coke selectivity.

Figure S6. Mass spectroscopy data for the Fe/HZSM5 catalyst (left) and H-(Fe)ZSM-5 catalyst (right) at 700°C (GHSV: 3750 cc/g/h with 50% CH_4 and 50% He). Since oxygen can only be extracted from the Fe species in the reaction system, CO_2 observed over these two catalysts must result from reduction of Fe species.