Supporting Information for

A novel CoP/MoS₂-CNTs hybrid catalyst with Pt-like activity for

hydrogen evolution

Yuan Pan, Yan Lin, Yunqi Liu*, Chenguang Liu*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 66 West Changjiang Road,

Qingdao, Shandong 266580, P. R. China

Experimental

^{*} Corresponding author. E-mail address: liuyq@upc.edu.cn; cgliu1962@sina.com

Tel.: +86-532-86981861; +86-532-86981716.

Materials

Molybdenum sulfide (MoS₂, 99.5%), cobalt(II) acetylacetonate (Co(acac)₂, 97%), trioctylphosphine (TOP, 90%), oleylamine (OAm, 95%), carbon nanotubes (CNTs, 95%, inside diameter: 3-5 nm, outside diameter: 8-15 nm, length: 50 μ m), ethanol (\geq 99.7%), hexane (\geq 99.5%), Nafion solution (5% in a mixture of lower aliphatic alcohols and water) and 20% Pt/C catalyst were purchased from Aladdin Chemistry Co. Ltd.

Synthesis of CoP/MoS₂-CNTs hybrid catalyst

In a typical synthesis, $Co(acac)_2 (0.257 \text{ g}, 1 \text{ mmol})$, $MoS_2 (50 \text{ mg}, 0.312 \text{ mmol})$, CNTs (40mg), ODE (5 mL, 15.6 mmol) and OAm (10 mL, 30.4 mmol) were placed in a four-neck flask under a flow of argon. The mixture was stirred and heated to 120 °C. Then TOP (5 mL, 11 mmol) was added to the above mixture solution and heated to 330 °C and kept at this temperature for 1 h. The product was washed with a mixture solvent of hexane and ethanol (V_{hexane} : $V_{ethanol} = 1 : 3$) by centrifugation after cooling to room temperature. Finally, CoP/MoS₂-CNTs hybrid catalyst can be synthesized by drying in vacuum at 60 °C for 24 h. Without changing other reaction conditions, no CNTs were added into the above reaction system before heating, the product was CoP/MoS₂ hybrid catalyst. In addition, pure CoP nanorods can be obtained in the above system without the addition of CNTs and MoS₂.

Characterization

X-ray diffraction (XRD) was measured on a panalytical X'pert PROX-ray diffractometer with Cu K α monochromatized radiation (λ = 1.54 Å) and operated at 45 kV and 40 mA. Scanning electron microscope (SEM) were carried out in Hitachi S-4800 at 5 kV. Transmission electron microscopy (TEM) and energy dispersive X-Ray spectroscopy (EDX) were carried out on a Tecnai-G20

microscope (FEI, USA) at an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) was operated on a VG ESCALABMK II spectrometer with a monochromatic Al K α source. N₂ sorption experiments were performed on a ChemBET 3000 (Quantachrome, USA) instrument.

Electrochemical measurements

The electrochemical measurements of the samples were performed in nitrogen-purged 0.5 M H₂SO₄ using a Gamry Instruments Reference 600 potentiostat in a standard three-electrode cell at room temperature. Ag/AgCl electrode as the reference electrode, a Pt wire as the counter electrode and the glassy carbon electrode (GCE) modifying samples as the working electrode. The preparation of working electrode was described as follows. 5 mg of sample catalyst was added into 1 mL of ethanol containing 20 μ L of 5 wt% Nafion, the mixture was dispersed by sonicating for 30 min to form a homogeneous ink. Then 5 μL catalyst ink was loaded onto a GCE surface. All the potentials were referenced to reversible hydrogen electrode (RHE) using the following equation: E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.222 V + 0.059 pH. In 0.5 M H₂SO₄, E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.222 V. Linear Sweep Voltammetry (LSV) measurements were carried out from -0.6 to 0 V vs. RHE with a scan rate of 5 mV \cdot s⁻¹ at room temperature and the data is presented with iR compensation. The double layer capacitance (C_{dl}) was conducted with cyclic voltammetry (CV) scanning from 0.1 to 0.2 V vs. RHE with different scan rates from 20 to 260 mV·s⁻¹. The cycling stability test was performed by CV scanning 1000 cycles from -0.2 to 0.2 V (vs. RHE) with a scan rate of 100 mV·s⁻¹. Electrochemical impedance spectroscopy (EIS) experiments were performed with frequencies ranging from 100 kHz to 0.1 Hz with an AC voltage of 5 mV at potential of 200 mV.

Fig. S1 XRD patterns of (a) pure MoS_2 , (b) CoP/MoS_2 and (c) pure CoP.

Fig. S2 N_2 sorption isotherm of the (a) pure MoS₂, (b) CoP/MoS₂ catalyst and pure CoP (Insets show the corresponding pore-size distribution curve).

Fig. S3 SEM and TEM images of (a-c) pure MoS_2 and (d-f) CoP/MoS_2 .

Fig. S4 (a) TEM and (b) SAED images of pure CoP NRs.

Fig. S5 XPS spectra of (a) Mo 3d and (b) S 2p regions of the pure MoS₂. (c) Mo 3d, (d) S 2p, (e) Co 2p and (f) P 2p regions of the as-synthesized CoP/MoS₂ hybrid catalyst. (g) Co 2p and (h) P 2p regions of the pure CoP.

Fig. S6 Calculation of exchange current density of pure MoS_2 , pure CoP, CoP/MoS₂ and CoP/MoS₂-

CNTs.

Fig. S7 CV curves of the pure MoS₂, pure CoP, CoP/MoS₂ and CoP/MoS₂-CNTs catalysts in 0.5 M H_2SO_4 solution in the region of 0.1-0.2 V vs. RHE with different scan rates from 20 mV·s⁻¹ to 260 mV·s⁻¹.

Catalyst	BET surface area	Pore volume	Pore size
	$(m^2 \cdot g^{-1})$	$(\mathrm{cm}^3 \cdot \mathrm{g}^{-1})$	(nm)
MoS_2	8.6	0.048	22.1
CoP	44.2	0.047	3.9
CoP/MoS ₂	29.2	0.05	6.25
CoP/MoS ₂ -CNTs	62.6	0.47	26.8

Table S1 Textural properties of the pure MoS_2 , pure CoP, CoP/MoS₂ and CoP/MoS₂-CNTs catalysts.

Catalyst	$log(j (mA \cdot cm^{-2}))$ at $\eta=0$ V	Exchange current density $j_0 [\mu A \cdot cm^{-2}]$	
MoS ₂	-3.8	0.158	
СоР	-3.5	0.216	
CoP/MoS ₂	-3.1	0.794	
CoP/MoS ₂ -CNTs	-2.5	3.16	

Table S2 Calculations of the exchange current density of the pure MoS_2 , pure CoP, CoP/MoS₂, and

CoP/MoS₂-CNTs catalyst by using extrapolation methods.