Supplementary Information:

Synthesis and structures of soluble magnesium and zinc carboxylates Containing

intramolecular NH ••• O hydrogen bonds in nonpolar solvents

Taka-aki Okamura,* Ryosuke Furuya and Kiyotaka Onitsuka

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka,

Osaka 560-0043, Japan

E-mail: tokamura@chem.sci.osaka-u.ac.jp

	L0H·3(AcOEt)	$(NMe_4)[L1]\cdot 2$ $H_2O\cdot 1,4-$ dioxane	L2 H·1/2(1,4-dioxane)	$Ca_2L1_4 \cdot 4(1, 4-dioxane) \cdot 4H_2$	MgL1 ₂ (EtOH) -4EtOH	MgL2 ₂ (EtOH) -5EtOH
formula	C83H108N2O10	C52H77N3O8	C41H49NO4	C ₁₉₆ H ₂₇₀ Ca ₂ N ₈ O ₃₅	$\begin{array}{c} C_{104}H_{154}Mg \\ N_4O_{16} \end{array}$	$\begin{array}{c} C_{96}H_{142}Mg \\ N_2O_{15} \end{array}$
fw	1293.71	872.16	619.81	3378.34	1740.61	1588.42
cryst syst	monoclinic	triclinic	triclinic	monoclinic	monoclinic	monoclinic
space group	Сс	$P\overline{1}$	$P\overline{1}$	$P2_{1}/c$	<i>C</i> 2/ <i>c</i>	$P2_{1}/c$
a, Å	18.9473(8)	11.5622(9)	11.7369(14)	18.0688(18)	28.1365(10)	14.5903(5)
b, Å	13.9306(6)	11.6068(8)	12.6605(17)	11.3006(12)	11.8861(4)	27.0129(9)
<i>c</i> , Å	28.662(2)	19.7688(14)	12.8455(17)	50.441(5)	31.198(2)	25.7904(17)
α , deg	90	92.302(6)	73.348(5)	90	90	90
β , deg	96.968(7)	105.780(7)	71.463(5)	108.006(6)	102.064(7)	112.681(7)
γ, deg	90	100.231(7)	83.617(6)	90	90	90
<i>V</i> , Å ³	7509.4(7)	2501.4(3)	1733.4(4)	9795.1(18)	10203.1(9)	9378.6(9)
Ζ	4	2	2	2	4	4
d_{calc} , g cm ⁻³	1.144	1.158	1.187	1.145	1.133	1.125
μ , mm ⁻¹	0.074	0.077	0.075	0.129	0.081	0.080
GOF	1.029	1.019	1.033	0.945	1.021	1.015
$R1^{a}[I > 2\sigma(I)]$	0.0770	0.0741	0.0649	0.1481	0.0756	0.0852
w $R2^{b}$ (all data)	0.2156	0.2071	0.1634	0.4705	0.2164	0.2429

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR2 = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{1/2}$

	MgL12(EtOH)	MgL2 ₂ (EtOH)
Mg-O11	2.049(2)	2.021(3)
Mg-O21		2.042(3)
mean		2.031
M–O(EtOH)	2.070(3)	2.076(4)
		2.117(4)
	$2.090(2)^{a}$	$2.068(3)^{a}$
		2.085(3) ^{<i>a</i>}
mean	2.080	2.087
C1011	1.274(4)	1.262(4)
C1-O21		1.261(4)
C1O12	1.247(4)	1.259(4)
C1–O22		1.261(4)

Table S2 Selected bond distances (Å) for MgL12(EtOH) and MgL22(EtOH)

^{*a*}Forming intramolecular OH····O=C hydrogen bond.

Fig. S1 Molecular structures of (a) **L0**H, (b) (NMe₄)[**L1**], and (c) **L2**H. **L2**H forms intermolecular hydrogen bonds with the neighboring **L2**H in the crystal.

Fig. S2 ¹H NMR spectra of (a) **L0**H, (b) **L1**H, (c) (NMe₄)[**L1**], (d) **L2**H, and (e) (NMe₄)[**L2**] in CDCl₃ at 30 °C.

Fig. S3 Schematic drawing of hydrogen bond networks in the crystals for (a) **MgL1**₂, (b) **MgL2**₂, (c) **ZnL1**₂, and (d) **ZnL2**₂ (see Figures 1 and 2). Red and blue broken lines denote intra- and intermolecular hydrogen bonds, respectively, accompanying the distances (Å). O(d) represents the oxygen atom of 1,4-dioxane in the crystal.

Fig. S4 Space-filling model of **MgL1**₂ (a) and a side view (b). The water molecule (indicated by blue arrows) is hydrogen-bonding to the coordinated water. Another water molecule is the back of the red arrow. Compare with Figure S3a.

Fig. S5 ¹H NMR spectra of **ZnL1**² in CD₂Cl₂ at (a) 30 °C, (b) 0 °C, (c) -30 °C, -60 °C, and -90 °C. The asterisk denotes the signal of 1,4-dioxane as a crystal solvent.

Fig. S6 ¹H NMR spectra of (a) **ZnL1**₂, (b) **ZnL1**₂ + (NMe₄)[**L1**] (= (NMe₄)[**ZnL1**₃]), (c) **ZnL1**₂ + $2(NMe_4)[L1]$, (d) **ZnL1**₂ + $4(NMe_4)[L1]$, and (e) (NMe₄)[L1] in CDCl₃ at 30 °C.

Fig. S7 ¹H NMR spectra of (NMe₄)[**ZnL1**₃] in CD₂Cl₂ at (a) 30 °C, (b) 0 °C, (c) -30 °C, -60 °C, and -90 °C.

Fig. S8 Optimized structures of (a) *fac*-[MgL13]⁻ and (b) *mer*-[MgL13]⁻.