Electronic Supplementary Information

Thiacalix[4]crown based chemosensor for Zn²⁺ and H₂PO₄⁻: sequential logic operations at the molecular level

Neetu Sharma, Shahi Imam Reja, Vandana Bhalla and Manoj Kumar*

Department of Chemistry, UGC Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar- 143005, Punjab, India

Email Address: <u>mksharmaa@yahoo.co.in</u>

- S4 ¹H NMR spectrum of compound 3 in $CDCl_3/CD_3CN$ (8:2).
- **S5** ¹H NMR spectrum of compound **5** in $CDCl_3/CD_3CN$ (8:2).
- S6 IR spectrum of compound 3.
- S7 Mass spectrum of compound 3.
- S8 Mass spectrum of compound 5.
- **S9** (a/b) UV-vis spectra of compound 3/5 in response to the presence of Zn^{2+} ions in CH₃CN:H₂O (8:2).
- S10 (a/b) UV-vis spectra of compound 3/5 in the presence of various metal ions in CH₃CN:H₂O (8:2).
- **S11** SPECFIT data of $3-Zn^{2+}$.
- **S12** SPECFIT data of $5-Zn^{2+}$.
- **S16** Calculations for quantum yield.
- **S17** Calculations for detection limit of compound **3** with Zn^{2+} ions.
- **S18** Calculations for detection limit of compound **5** with Zn^{2+} ions.
- S19 I (a/b) ¹H NMR spectra of free ligand 3/5 in CDCl₃/CD₃CN (8:2); (c/d) in presence of 2.0 equiv. of zinc perchlorate. II. (A) ¹H NMR spectra of free ligand 3; (B) in presence of 1.0 equiv. of potassium perchlorate; (C) addition of 2.0 equiv. of zinc perchlorate to ligand/potassium complex.

- **S20** Mass spectrum of $3-Zn^{2+}$ complex.
- **S21** Mass spectrum of 5-Zn²⁺ complex.
- S22 Fluorescence response of compound 3/5 towards various metal ions in CH₃CN:H₂O (8:2).
- S23 Bar diagrams showing selectivity/competitive selectivity of receptor 3 towards Zn^{2+} ions in CH₃CN:H₂O (8:2).
- S24 Bar diagrams showing selectivity/competitive selectivity of receptor 5 towards Zn^{2+} ions in CH₃CN:H₂O (8:2).
- **S25** ¹H NMR spectrum of compound **7** in CDCl₃.
- **S26** 13 C NMR spectrum of compound 7 in CDCl₃.
- S27 Mass spectrum of compound 7.
- **S28** Fluorescence emission spectra of compound 7 in response to the presence of Zn^{2+} ions in CH₃CN:H₂O (8:2).
- **S29** Fluorescence emission spectra of compound 3/5 in response to the presence of K⁺ ions in CH₃CN:H₂O (8:2).
- **S30** Fluorescence emission spectra of compound 3/5 in response to the zinconia solution in CH₃CN:H₂O (8:2).
- S31 Fluorescence emission spectra of compound 3/5 in response to the zinc nitrate solution in CH₃CN:H₂O (8:2).
- S32 Fluorescence emission spectra of compound 3/5 in response to the zinc chloride solution in CH₃CN:H₂O (8:2).
- S33 Plot showing the fluorescence emission intensity of 3/5 upon the addition of different zinc salts (equivalent).
- **S34** Fluorescence emission spectra of $5 \cdot Zn^{2+}$ complex upon addition of $H_2PO_4^-$ ions in CH₃CN:H₂O (8:2).
- **S35** Fluorescence emission spectra of **3** showing reversibility of Zn^{2+} and $H_2PO_4^-$ ions in CH₃CN:H₂O (8:2).
- **S36** (a) Fluorescence emission spectra of **3** upon addition of $H_2PO_4^-$ in CH₃CN:H₂O (8:2); (b) Fluorescence emission spectra of **3**+ H₂PO₄⁻ upon addition of Zn²⁺ in CH₃CN:H₂O (8:2).
- S37 Fluorescence emission spectra of 3/5-Zn²⁺ complex upon addition of various anions in CH₃CN:H₂O (8:2).

- **S38** Bar diagrams showing selectivity/competitive selectivity of $3-Zn^{2+}$ complex towards $H_2PO_4^{-1}$ ions in CH₃CN:H₂O (8:2).
- **S39** Bar diagrams showing selectivity/competitive selectivity of $5 Zn^{2+}$ complex towards $H_2PO_4^-$ ions in CH₃CN:H₂O (8:2).
- S40 Fluorescence emission spectra of 3/5-Zn²⁺ complex upon addition of other different phosphate anions in CH₃CN:H₂O (8:2).
- **S41** ¹³C NMR Spectrum of compound **3** in CDCl₃.
- S42 ¹³C NMR Spectrum of compound 5 in CDCl₃.

¹H NMR Spectrum of compound **3**

¹H NMR Spectrum of compound **5**

IR Spectrum of compound 3

Mass spectrum of compound 3

Mass spectrum of compound 5

Figure S1. (a/b) UV-vis spectra of 3/5 (10 μ M) in presence of Zn²⁺ ions (0-100 equiv) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.

Figure S2. (a/b): UV-vis spectra of **3/5** (10 μ M) in presence of different metal ions: Zn²⁺, Cd²⁺, Hg²⁺, Co²⁺, Ni²⁺, Na⁺, K⁺, Li⁺, Fe²⁺, Fe³⁺, Cu²⁺, Pb²⁺, Ag⁺, Al³⁺ (0-100 equiv.) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0.

SPECFIT data of **3-**Zn²⁺

M:L = 2:1

[PROGRAM] Name = SPECFIT Version = 3.0

[FILE]

Name = ZN2+COM-3.FAC Path = C:\Program Files\SPECFIT\DATA\ Date = 20-Oct-07 Time = 6:24:34 PM Ncomp = 2 Nmeas = 69 Nwave = 289

[FACTOR ANALYSIS]

```
Tolerance = 1.000E-09
```

Max.Factors = 10

Num.Factors = 6

Significant = 3

Eigen Noise = 1.538E+00

Exp't Noise = 1.538E+00

Eigenvalue Square Sum Residual Prediction

1 4.000E+08 1.676E+05 2.900E+00 Data Vector

2 9.813E+04 6.951E+04 1.867E+00 Data Vector

3 2.236E+04 4.715E+04 1.538E+00 Data Vector

4 6.237E+03 4.092E+04 1.433E+00 Probably Noise

5 3.040E+03 3.788E+04 1.378E+00 Probably Noise

6 1.927E+03 3.595E+04 1.343E+00 Probably Noise

[MODEL]

Date = 20-Oct-07Time = 6:24:47 PM Model = 0Index = 3Function = 1

Species = 3

Params = 3

[SPECIES]	[COLORED]	[FIXED]	[SPECTRUM]
100	False	False	
010	True	False	
210	True	False	

[SPECIES]	[FIXED]	[PARAMETER]	[ERR	OR]
100	True	0.00000E+00	+/-	0.00000E+00
010	True	0.00000E+00	+/-	0.00000E+00
210	False	6.97800E+00	+/-	4.09846E-02

[CONVERGENCE]

Iterations = 8

Convergence Limit = 1.000E-04

Convergence Found = 1.385E-05

Marquardt Parameter = 0.0

 $Sum(Y-y)^2$ Residuals = 2.89152E+06

Std. Deviation of Fit(Y) = 1.20420E+01

[STATISTICS]

Experimental Noise = 1.538E+00

Relative Error Of Fit = 8.5319% Durbin-Watson Factor = 0.8123 Goodness Of Fit, Chi^2 = 6.132E+01 Durbin-Watson Factor (raw data) = None Goodness Of Fit, Chi^2 (raw data) = None

[COVARIANCE] 9.794E-03

[CORRELATION] 1.000E+00

[END FILE]

SPECFIT data of **5-**Zn²⁺

M:L = 2:1

[PROGRAM] Name = SPECFIT Version = 3.0

[FILE]

Name = ZN2+COM-5.FAC Path = C:\Program Files\SPECFIT\DATA\ Date = 20-Oct-07 Time = 6:39:00 PM Ncomp = 2 Nmeas = 91 Nwave = 289

```
[FACTOR ANALYSIS]
Tolerance = 1.000E-09
Max.Factors = 10
Num.Factors = 6
Significant = 3
Eigen Noise = 1.022E+00
# Eigenvalue Square Sum Residual Prediction
1 7.398E+07 9.580E+04 1.909E+00 Data Vector
2 4.399E+04 5.181E+04 1.404E+00 Data Vector
3 2.434E+04 2.747E+04 1.022E+00 Data Vector
4 3.079E+03 2.439E+04 9.631E-01 Probably Noise
5 1.806E+03 2.259E+04 9.268E-01 Probably Noise
6 9.115E+02 2.167E+04 9.079E-01 Probably Noise
```

[MODEL]

Date = 20-Oct-07Time = 6:39:19 PM Model = 0Index = 3Function = 1Species = 3

Params = 3					
[SPECIES]	[COLORED]	[FIXED]	[SPEC7	[RUM]	
100	False	False			
010	True	False			
210	True	False			
[SPECIES]	[FIXED]	[PARAMETE	R]	[ERROI	R]
100	True	0.0000	0E+00	+/- (0.00000E+00
010	True	0.0000	0E+00	+/- ().00000E+00
210	False	6.4503	4E+00	+/- 4	<mark>4.11876E-02</mark>

[CONVERGENCE]

Iterations = 6 Convergence Limit = 1.000E-04 Convergence Found = 4.391E-06 Marquardt Parameter = 0.0 Sum(Y-y)^2 Residuals = 1.03848E+06 Std. Deviation of Fit(Y) = 6.28404E+00

[STATISTICS] Experimental Noise = 1.022E+00 Relative Error Of Fit = 11.9260%

Durbin-Watson Factor = 0.9860 Goodness Of Fit, Chi^2 = 3.780E+01 Durbin-Watson Factor (raw data) = None Goodness Of Fit, Chi^2 (raw data) = None

[COVARIANCE] 9.896E-03

[CORRELATION] 1.000E+00

[END FILE]

Calculations for quantum yield:

Fluorescence quantum yields ¹ were determined by using an optically matching solution of naphthalene ($\Phi_{fr} = 0.23$ in cyclohexane) as the standard at an excitation wavelength of 280 nm and the quantum yield is calculated using the equation:

$$\Phi_{\rm fs} = \Phi_{\rm fr} \times (1 - 10^{-{\rm ArLr}} / 1 - 10^{-{\rm AsLs}}) \times ({\rm N_s}^2 / {\rm N_r}^2) \times ({\rm D_s} / {\rm D_r})$$

 Φ_{fs} and Φ_{fr} are the radiative quantum yields of the sample and the reference respectively, A_s and A_r are the absorbance of the sample and the reference, respectively, D_s and D_r are the respective areas of emission for the sample and reference. L_s and L_r are the lengths of the absorption cells of the sample and reference, respectively. N_s and N_r are the refractive indices of the sample and reference solutions (pure solvents were assumed).

Calculations for detection limit of compound 3:

Figure S3. Figure showing the fluorescence intensity at 445 nm as a function of Zn^{2+} ions concentration.

To determine the detection limit, fluorescence titration of compound 3 was carried out by adding aliquots of zinc ions solution in minimum concentration and fluorescence intensity as a function of concentration of zinc ions added was then plotted. From this graph, we had determined the detection limit by multiplying the concentration where there is sharp change in fluorescence intensity to the concentration of compound 3.

Equation used for calculating detection limit (DL): The detection limit was then calculated by using the following equation:

$$\begin{split} DL &= C_L \times C_T \\ C_L &= Conc. \text{ of Ligand; } C_T = Conc. \text{ of Titrant at which change observed.} \\ Thus; \\ DL &= 10 \times 10^{-6} \times 13.8 \times 10^{-4} = 1.38 \times 10^{-8} \text{ M.} \end{split}$$

Thus by using the above formula, detection limit (DL) was found to be 1.38×10^{-8} M i.e. compound **3** can detect Zn²⁺ in this minimum concentration.

Calculations for detection limit of compound 5:

Figure S4. Figure showing the fluorescence intensity at 445 nm as a function of Zn^{2+} ions concentration.

To determine the detection limit, fluorescence titration of compound **5** was carried out by adding aliquots of zinc ions solution in minimum concentration and fluorescence intensity as a function of concentration of zinc ions added was then plotted. From this graph, we had determined the detection limit by multiplying the concentration where there is sharp change in fluorescence intensity to the concentration of compound **5**.

Equation used for calculating detection limit (DL): The detection limit was then calculated by using the following equation:

$$\begin{split} DL &= C_L \times C_T \\ C_L &= \text{Conc. of Ligand; } C_T = \text{Conc. of Titrant at which change observed.} \\ \text{Thus;} \\ DL &= 10 \times 10^{-6} \times 11 \times 10^{-3} = 1.1 \times 10^{-7} \,\text{M.} \end{split}$$

Thus by using the above formula, detection limit (DL) was found to be 1.1×10^{-7} M i.e. compound 5 can detect Zn²⁺ in this minimum concentration.

Figure S5. I (**a**/**b**) ¹H NMR spectra of free ligand **3**/**5** in CDCl₃/CD₃CN (8:2); (**c**/**d**) in presence of 2.0 equiv. of zinc perchlorate. **II.** (**A**) ¹H NMR spectra of free ligand **3**; (**B**) in presence of 1.0 equiv. of potassium perchlorate; (**C**) addition of 2.0 equiv. of zinc perchlorate to ligand/potassium complex. NMR frequency is 300 MHz.

Mass Spectrum of **3-Zn**²⁺

Mass Spectrum of **5-Zn**²⁺

Figure S6. Fluorescence response of compound **3**/**5** (10 μ M) towards various metal ions: Zn²⁺ (89/61 equiv), Cd²⁺, Hg²⁺, Cu²⁺, Co²⁺, Ni²⁺, K⁺, Na⁺, Li⁺, Fe²⁺, Fe³⁺, Ag⁺, Pb²⁺, Al³⁺ (0-200 equiv) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

Figure S7. Fluorescence response of **3** (10 μ M) to various metal ions (200 equiv each) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; λ_{ex} = 380 nm. (A) Fluorescence selectivity (I/I₀) of **3** upon addition of different metal ions; (B) competitive selectivity of probe **3** towards Zn²⁺ ions (89 equiv) in the presence of other metal ions (200 equiv). I₀ = initial fluorescence intensity at 445 nm; I = final fluorescence intensity at 445 nm after the addition of metal ions.

Metal ions

Figure S8. Fluorescence response of **5** (10 μ M) to various metal ions (200 equiv each) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; λ_{ex} = 380 nm. (A) Fluorescence selectivity (I/I₀) of **5** upon addition of different metal ions; (B) competitive selectivity of probe **5** towards Zn²⁺ ions (61 equiv) in the presence of other metal ions (200 equiv). I₀ = initial fluorescence intensity at 445 nm; I = final fluorescence intensity at 445 nm after the addition of metal ions.

¹H NMR Spectrum of compound **7**

¹³C NMR Spectrum of compound **7**

Mass Spectrum of compound 7

Figure S9. Fluorescence emission response of **7** (10 μ M) towards Zn²⁺ ions (0-500 equiv) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

Figure S10. Fluorescence emission spectra of **3** (10 μ M) in presence of K⁺ (0-200 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

Figure S11. (a/b): Fluorescence emission spectra of 3/5 (10 μ M) upon addition of zinconia solution (0-96/0-56 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

Figure S12. (a/b): Fluorescence emission spectra of 3/5 (10 μ M) upon addition of zinc nitrate solution (0-82/0-69 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0, $\lambda_{ex} = 380$ nm.

Figure S13. (a/b): Fluorescence emission spectra of **3**/**5** (10 μ M) upon addition of zinc chloride solution (0-96/0-57 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0, λ_{ex} = 380 nm.

Figure S14. (a/b): Plot showing the fluorescence emission intensity at 445 nm of **3/5** (10 μ M) upon the addition of different zinc salts (equivalent) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; λ ex = 380 nm.

Figure S15. Fluorescence emission spectra of 5-Zn²⁺ complex upon addition of $H_2PO_4^-$ (0-40 equiv) in CH₃CN/H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda ex = 380$ nm.

Figure S16. Fluorescence emission spectra of **3** showing reversibility of Zn^{2+} and $H_2PO_4^-$ ions: **3** (10µM) + Zn^{2+} (89 equiv) + $H_2PO_4^-$ (60 equiv) + Zn^{2+} ions (240 equiv) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

Figure S17. (a) Fluorescence emission spectra of **3** (10µM) upon addition of $H_2PO_4^-$ ions (0-60 equiv) in CH₃CN:H₂O (8:2, v/v); (b) Fluorescence emission spectra of **3**+H₂PO₄⁻ upon addition of Zn²⁺ (0-89 equiv) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

Figure S18. (a/b): Fluorescence emission spectra of 3/5-Zn²⁺ complex upon addition of various anions: H₂PO₄⁻, F⁻, Cl⁻, Br⁻, I⁻, OAc⁻, CN⁻, NO₃⁻, (60/40 equiv) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

Figure S19. Fluorescence response of **3**-Zn²⁺ towards various anions (60 equiv) in CH₃CN/H₂O (8:2, v/v); $\lambda_{ex} = 380$ nm. Bars represent the emission intensity ratio (I/I₀) (I₀ = initial fluorescence intensity at 445 nm; I = final fluorescence intensity at 445 nm after the addition of anions).

Figure S20. Fluorescence response of $5\text{-}Zn^{2+}$ towards various anions (40 equiv) in CH₃CN/H₂O (8:2, v/v); $\lambda_{ex} = 380$ nm. Bars represent the emission intensity ratio (I/I₀) (I₀ = initial fluorescence intensity at 445 nm; I = final fluorescence intensity at 445 nm after the addition of anions).

Figure S21. (a/b): Fluorescence emission spectra of 3/5 Zn²⁺ complex towards other different phosphate anions: PO₄³⁻, HP₂O₇³⁻, AMP, ADP, ATP (60/40 equivalent each) in CH₃CN:H₂O (8:2, v/v) buffered with HEPES, pH = 7.0; $\lambda_{ex} = 380$ nm.

¹³C NMR Spectrum of compound **3**

¹ J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, **75**, 991.