Supplemental Information

Synthesis, structural characterization, electronic spectroscopy, and microfluidic detection of Cu^{+2} and UO_2^{+2} [di-tert-butyl-salphenazine] complexes

B. A. Maynard,^a J. C. Brooks,^a E. E. Hardy^a, C. J. Easley,^a and A. E. V. Gorden^{a*}

^{*a*} Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, USA.

SI1
SI1
SI2
SI4
SI7
I18

Experimental

Caution! The $UO_2(NO_3)_2 \bullet 6H_2O$ used in this study contained depleted uranium, standard precautions for handling radioactive materials or heavy metals, such as uranyl nitrate, were followed.

Pyridine (99.8%, Sigma-Aldrich), 3,5-di-tert-butylsalicyaldehyde (98%, TCI), 2,3diaminophenazine (98%, Aldrich), and Copper (II) acetyacetonate (98% STREM) were used as received without further purification. $UO_2(NO_3)_2$ •6H₂O (98%, J. T. Baker) was recrystallized from a nitric acid solution and stored under hexanes until use.

Synthesis

Complex Cu[di-tert-butylsal-phenazine]: 50 ml of pyridine was placed in a round bottom flask charged with a stir bar and heated at 80 °C. A 0.2204 gram (0.9406 mmol) addition of 3,5-ditertbutyl salicyaldehyde was added to dissolve in the warmed solution. A 0.1253 gram (0.4787 mmol) addition of copper (II) acetylacetonate was dissolved in the warmed solution. In a separate beaker 0.0982 gram (0.4671 mmol) of 2,3diaminophenazine was dissolved in about 25 ml of pyridine. The pyridine solution was added slowly with the aide of a syringe pump set to deliver 4ml/hr. The reaction was allowed to proceed for 24 hours, then the reaction mixture was allowed to come to room temperature and subsequently rotovapped to dryness. Column chromatography was performed with a mobile phase of 3:4 acetone to hexanes. This was set up in an attempt to isolate the red/maroon/violet spot seen on the TLC plate. Single crystals of X-ray diffraction quality were obtained after 2 days of slow evaporation. M+1 found 703.1739 and calculated 704.4018. A THF solution containing ~50 mg was placed in several test tubes and then put in secondary containers for slow diffusion crystallization containing secondary solvents. Crystals were observed in the MeOH and EtOH slow evaporation chambers. CCDC# 1019624

Complex UO₂[di-tert-butylsal-phenazine]: 50 ml of pyridine was placed in a round bottom flask charged with a stir bar and heated at 80 °C. A 0.2219 gram (0.9500 mmol) addition of 3,5-di-tert-butylsalicyaldehyde was added to dissolve in the warmed solution. A 0.2381 gram (0.4740 mmol) addition of UO₂(NO₃)₂•6H₂O was then added to the flask and allowed to dissolve in the warmed solution. Several increments totaling 0.0996 g (0.474 mmol) of 2,3 diaminophenazine was then added to the flask in equal increments over the course of 1 hour. The reaction was then allowed to heat for 24 A mixture of products were obtained by mass spectroscopy analysis. This hours mixture was purified by column chromatography using a 1:1 ratio of ethyl acetate to hexanes as the mobile phase. LCMS: M+1 found 911.4117 and calculated 913.8996 calculated. A THF solution containing ~50 mg was placed in several test tubes and then put in secondary containers for slow diffusion crystallization containing secondary solvents. Crystals were observed in the MeOH and EtOH slow evaporation chambers. CCDC# 1019622

Ligand L: UO_2 [di-tert-butylsalphenazine] (50 mg, 0.055 mmol) was dissolved in 15 mL of THF and 20 mL of Chloroform. Twice the molar equivalent of nitric acid (0.11 mmol) was added to the organic phase in a separatory funnel. Solution was shaken, vented and organic layer removed. The organic layer was then washed with ~30 mL of water three times. This process of alternating an acid wash with three aqueous washes was repeated until an orange color was obtained. Solvent was removed using a rotovap. Products were confirmed via mass spec analysis with peaks at 643.4036 m/z (L = ditert-butylsalphenazine)

Microfluidic Device Fabrication

Microdevices were fabricated using polydimethylsiloxane (PDMS) and soft lithography techniques.^{1,2}The silicon wafer master design (Figure 4a) was a previously established droplet generating chip designed in house.¹ Wafers were pre-treated with 1mL of chlorotrimethylsilane for 30 min. After mixing 10:1 base to curing agent of PDMS, the de-gassed mixture was cured on top of the wafer at 65°C overnight. Once cured, the PDMS was carefully peeled off the wafer and designated inlet/outlets were punched for sample and outlet wells. The PDMS along with a glass microscope slide was then washed with methanol, dried with a nitrogen air gun, and cleaned with scotch tape. Once cleaned, both the PDMS chip and the microscope slide were placed in an air plasma cleaner for 45 sec (Harrick Plasma) and immediately placed on top of each other to bond together. 1.5cm OD Tygon tubing was inserted into the outlet well, and a blunt ended needle was inserted into the opposite end of the tubing. Aquapel (Pittsburgh Glass Works) was applied to each of the inlet channels of the chip and pulled through with a mild vacuum to surface treat the channels. Methanol was washed through as well to remove any excess Aquapel. Chips were then placed back into the 65 °C oven to dry for at least 4 hours. Solutions were flowed through the chips passively, via a handheld, 25mL syringe connected to the needle in the tubing. Chips were taped to the imaging stage to hold them in place. Vacuum was applied to the chip on the stage and the droplets were imaged directly on the chip. In order to form oil in organic droplets, 1.8% w/w Krytox 157 FSL surfactant (Dupont) in HFE-7500 oil (3M) droplet carrier fluid was applied to the oil well.¹

Electronic Spectroscopy

Figure SI1 Electronic spectra in the UV-Vis energy range of L, Cu[L], UO₂[L], Cu(NO₃)₂, and UO₂(NO₃)₂ starting materials. All samples were run at 20 μ M.

Figure SI2 Cu^{+2} titration of the ligand in pyridine indicates a 1:1 Cu^{+2} to L complex. L concentration was kept at 20 μ M. Spectra were obtained minutes after the solutions were made.

Figure SI3 UO_2^{+2} titration of the ligand in pyridine indicates a 1:1 UO_2^{+2} to L complex. L concentration was kept at 20 μ M. Spectra were obtained minutes after the solutions were made.

Figure SI4 UO_2^{+2} titration of the ligand in pyridine indicates a 1:1 UO_2^{+2} to L complex. L concentration was kept at 20 μ M. Spectra were obtained after 3days.

Microspectophotometer Imaging

UV–Visible data were acquired from microfluidic droplets and microwells using a CRAIC Technologies 20/20 PV microspectrophotometer. 400 picoliter droplets were generated on the microfluidic chip and the data were collected from 200 to 800 nm. Microwell data was also measured using the same parameters and fixed pathlength. The exposure time was auto-optimized by the CRAIC Minerva 8.7.3.12 software.

µWell Chips

2.5mm diameter holes were punched into flat pieces of PDMS. These portions of PDMS were made in a similar fashion as the droplet generating chip, but they were cured over a plain, untemplated wafer. Chips with up to 30 holes were then plasma oxidized, bonded, and treated as stated previously. Each well served as a micro sized cuvette (10 μ L) for collecting spectral data on the CRAIC microspectrophotometer. Samples were pipetted into separate wells and the chip was placed onto the imaging stage. Spectral data was collected directly from the chip.

Figure SI5 Electronic spectra in the UV-Vis energy range of L at various concentrations as collected on the chip using the microspectrophotometer

Figure SI6 Electronic spectra in the UV-Vis energy range of Cu[L] at various concentrations as collected on the chip using the microspectrophotometer

Figure SI7 Electronic spectra in the UV-Vis energy range of $UO_2[L]$ at various concentrations as collected on the chip using the microspectrophotometer

Single crystal X-ray diffraction

The X-ray diffraction datasets were collected at 183K, on a Bruker SMART APEX CCD X-ray diffractometer unit using Mo K α radiation, from crystals mounted in Paratone-N oil on glass fibers. SMART (v 5.624) was used for preliminary determination of cell constants and data collection control. Determination of integrated intensities and global cell refinement were performed with the Bruker SAINT software package using a narrow-frame integration algorithm. The program suite ShelXTL (v 5.1) was used for space group determination, structure solution, and refinement.³ Refinement was performed against F^2 by weighted full-matrix least squares, and empirical absorption correction (SADABS) was applied.⁴ Projections were generated in the Olex2.1-1 graphics program.⁵

Cu[di-tert-butyl-salphenazine] Crystal Data and Experimental

CCDC

 $C_{42}H_{48}CuN_4O_2$ Formula $D_{calc.}$ / g cm⁻³ 1.274 μ/ mm^{-1} 0.636 Formula Weight 704.39 Colour Red Shape Prism 0.48 × 0.11 × 0.05 Size/mm³ T/K 180(2) Crystal System Triclinic Space Group P1a/ 9.9751(2) b/ 12.6630(3)c/ 14.8623(3) $\alpha/^{\circ}$ 93.6100(10) $\beta/^{\circ}$ 96.8350(10) $\gamma/^{\circ}$ 98.7160(10) $V/^3$ 1836.17(7) Ζ 2 Θ_{min} 1.38 $\Theta_{max}/$ 26.77 Measured Refl. 60413 Independent Refl. 7756 Reflections Used 6595 R_{int} 0.0333 454 Parameters Restraints 0 Largest Peak 0.925 Deepest Hole -0.422 GooF 1.062 $wR_2(all data)$ 0.0966 wR_2 0.0924 R_1 (all data) 0.0465 R_1 0.0365

1019624

Crystal Data. C42H48CuN4O2, M = 704.39, Tri- clinic, *P* 1 (No. 2, *a* = 9.9751(2) A, *b* = 12.6630(3)A, *c* = 14.8623(3)A, *a* = 93.61°, *β* = 96.835°, γ = 98.716°, *V* = 1836.17(7)*A*³, *T* = 180(2) K, *Z* = 2, μ (Mo K α) = 0.636, 60413 reflections measured, 7756 unique (*R*_{int} = 0.0333) which were used in all calculations. The final *wR*2 was 0.0966 (all data) and *R*₁ was 0.0365 (> $2\sigma(I)$).

Experimental. Single crystals of C42H48CuN4O2 (Cu[di-tert-butylsal-phenazine) were obtained by recrystallization from slow evaporation from a concentrated THF solution at room temperature. A suitable crystal (0.48 \times 0.11 \times 0.05mm³) was selected and mounted on a glass fiber with paratone N cryoprotectant on a Bruker APEX diffractometer. The crystal was kept at 180(2) K during data collection. Using Bruker APEX2, the structure was solved with the ShelX structure solution program, using direct methods. The model was refined with the ShelXL refinement package using least squares minimization.

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (A²×10³) for Cu[di-tert-butylsal-phenazine. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
Cul	-34.8(2)	9894.14(17)	3409.36(14)	17.76(8)
O2	-646.1(13)	10812.6(10)	2549.2(9)	22.9(3)
01	-1372.4(13)	8750.6(10)	2809.7(9)	24.1(3)
N1	588.6(15)	9024.8(12)	4345(1)	18.0(3)
C3	-3235.1(19)	7306.3(16)	1497.6(13)	24.2(4)
N4	5471.4(16)	11198.0(13)	6253.3(11)	23.1(3)
N3	4452.3(16)	9069.5(13)	6656.1(11)	23.7(3)
N2	1449.6(15)	10983.9(12)	4003.7(10)	17.7(3)
C16	1790.7(18)	9523.4(14)	4912.7(12)	17.7(4)
C27	2288.2(18)	10608.6(14)	4713.9(12)	17.5(4)
C28	1706.0(19)	11965.6(14)	3766.8(12)	19.8(4)
C29	998.2(19)	12396.8(14)	3027.6(12)	20.1(4)
C43	-122.2(18)	11788.1(14)	2426.6(12)	19.0(4)
C37	-663 1(19)	12281.2(15)	1643.1(12)	20.1(4)
C36	-99.0(19)	13318.1(15)	1536.1(13)	22.1(4)
C31	988 2(19)	13946.8(15)	2130.2(13)	21.9(4)
C30	1511.9(19)	13475.5(15)	2864.0(13)	22.4(4)
C32	1516(2)	15084.3(15)	1897.2(14)	25.9(4)
C35	352(2)	15754.7(17)	1855.0(18)	38.1(5)
C34	2026(2)	15012.7(19)	961.7(16)	39.2(5)
C33	2620(2) 2697(2)	15652.5(17)	2588.3(17)	37.7(5)
C38	-1808(2)	11645.7(15)	945.4(13)	22.9(4)
C41	-1302(2)	10660.0(18)	533.4(14)	34.4(5)
C40	-3098(2)	11297.0(18)	1389.9(15)	32.8(5)
C39	-2209(2)	12309.9(18)	157.7(15)	34.5(5)
C26	2209(2) 2487.7(10)	11152.2(15)	5171.1(12)	20.9(4)
C25	3467.7(19) 4265.2(10)	10661.9(15)	5844.6(12)	19.9(4)
C18	4205.3(19) 3756 $0(10)$	9592.4(15)	6046.1(12)	20.2(4)
C19	5750.9(19) 5648 7(19)	9611.1(16)	7076.5(12)	22.7(4)
C20	6/33(2)	9106.4(18)	7742.6(13)	28.6(4)
C21	7645(2)	9636.1(19)	8175.4(14)	31.3(5)
C22	8161(2)	10687.6(19)	7974.3(14)	31.2(5)
C23	7451(2)	11198.4(17)	7336.8(14)	28.4(4)
C24	61651(19)	10677.2(16)	6873.5(12)	22.3(4)
C17	25022(10)	9047.7(15)	5569.3(13)	21.8(4)
C14	-10857(19)	7423.9(15)	3867.0(13)	20.7(4)
C1	-1681.0(18)	7780.3(14)	3036.6(13)	19.8(4)
C2	-1081.0(18)	7006.0(15)	2436.5(13)	21.0(4)
C4	-2043.7(10)	6347.5(18)	939.3(15)	35.6(5)
C6	-4100(2)	7673.1(18)	939.1(14)	30.9(5)
C5	-2070(2)	8202.1(19)	1618.6(16)	35.2(5)
C7	-4094(2)	5999.8(15)	2728.0(13)	22.8(4)
C8	-3006.8(19)	5651.4(15)	3570.4(13)	21.5(4)
C13	-2483.1(19)	6368.2(15)	4111.4(13)	22.3(4)
C9	-1523.9(19)	4494.5(15)	3793.5(14)	25.1(4)
C10	-2928(2)	4182(2)	3670(3)	66.5(9)
C15	-4474(3)	8047.6(14)	4448.7(12)	19.2(4)
C11	13.9(18)	3735(2)	3154(2)	60.1(8)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	\mathbf{U}_{12}
Cul	22.10(13)	15.05(12)	14.70(12)	3.27(8)	-2.47(8)	1.40(8)
O2	27.3(7)	18.9(7)	19.8(7)	6.2(5)	-5.0(5)	0.0(5)
01	28.0(7)	18.4(7)	22.3(7)	4.3(5)	-7.0(6)	-0.8(5)
N1	20.5(8)	17.6(7)	15.0(7)	1.5(6)	-0.5(6)	2.4(6)
C3	23(1)	24.7(10)	22.5(10)	1.0(8)	-2.8(8)	0.7(8)
N4	23.7(8)	23.6(8)	20.7(8)	-1.1(6)	-0.1(6)	2.7(7)
N3	23.9(8)	28.2(9)	18.6(8)	5.8(7)	-1.1(6)	4.7(7)
N2	21.3(8)	16.8(7)	14.7(7)	2.6(6)	-0.2(6)	3.5(6)
C16	19.2(9)	18.1(9)	15.2(9)	0.6(7)	0.2(0)	2.6(7)
C27	22.0(9)	17.5(9)	13.4(8)	1.8(7)	1.6(7)	5.1(7)
C28	23.5(9)	17.3(9)	17.5(9)	0.9(7)	1.0(7)	1.9(7)
C29	24.1(9)	18.5(9)	18.1(9)	3.8(7)	0.2(7)	4.8(7)
C43	22.5(9)	17.9(9)	17.6(9)	3.2(7)	2.1(7)	5.2(7)
C37	22.7(9)	21.7(9)	17.5(9)	41(7)	3.0(7)	6.7(7)
C36	243(10)	23.6(10)	20.8(10)	9.0(8)	3.2(7)	8.7(8)
C31	24(1)	17 9(9)	25.3(10)	64(7)	2.0(7)	4.9(7)
C30	23.6(10)	18 1(9)	24.8(10)	33(7)	4.1(8)	2.8(7)
C32	27.4(10)	19.8(9)	$\frac{21.0(10)}{31.4(11)}$	11.0(8)	0.0(8)	4.2(8)
C35	35.7(12)	242(11)	56 3(15)	11.0(0) 12 1(10)	2.3(8)	4.2(0) 8.6(0)
C34	43.2(13)	363(13)	38.7(13)	12.1(10) 14.5(10)	4.7(11)	-0.5(10)
C33	40.2(13)	23.6(11)	45.7(13)	14.5(10) 12 5(10)	11.2(10)	0.3(10)
C38	40.2(13)	23.0(11) 23.4(10)	43.7(14) 17.7(0)	12.3(10) 5 1(7)	-5.3(10)	-2.5(9)
C41	27.2(10)	23.4(10) 22.7(12)	17.7(9) 21.0(11)	3.1(7)	-1.3(8)	5.0(8)
C41	240(10)	33.7(12) 30.2(12)	21.9(11) 31.8(12)	-3.2(9)	-5.9(9)	12(1)
C30	24.9(10) 28.6(12)	35.2(12)	31.6(12) 27.1(11)	0.1(9)	-1.2(9)	-0.5(9)
C39	38.0(12)	35.1(12) 16 5(0)	27.1(11) 10.8(0)	10.0(9)	-9.1(9)	4(1)
C20	23.8(10) 21.2(0)	10.3(9) 21.7(0)	15.8(9) 16.0(0)	2.9(7)	0.6(7)	2.6(7)
C23	21.3(9) 21.6(0)	21.7(9) 22.5(0)	10.0(9) 15 5(0)	-1./(/)	0.0(7)	4.4(7)
C10	21.0(9) 22.1(0)	23.3(9) 21 $4(11)$	15.5(9)	2.5(7)	1.2(7)	4.4(7)
C_{19}	22.1(9)	31.4(11)	13.3(9)	0.7(8)	2.3(7)	7.2(8)
C20 C21	28.3(11)	38.0(12) 48.0(12)	20(1)	4.6(8)	0.3(8)	10.7(9)
C21 C22	20.9(11)	48.9(13)	19.4(10)	-0.2(9)	-2.1(8)	15.9(10)
C22	22.1(10)	47.1(13)	22.5(10)	-8.6(9)	-3.1(8)	8.7(9)
C23	25.3(10)	32.6(11)	25.4(11)	-7.1(8)	1.1(8)	4.0(8)
C24	22.4(9)	28.3(10)	16.4(9)	-3.1(8)	1.0(7)	7.8(8)
C1/	25.3(10)	19.1(9)	20.4(10)	6.2(7)	0.4(8)	1.6(7)
C14	22.2(9)	18.2(9)	21.6(10)	1.0(7)	2.0(7)	4.4(7)
	19.7(9)	18.5(9)	21.3(9)	1.4(7)	2.1(7)	3.6(7)
C2	18.2(9)	21.7(9)	22.3(10)	0.2(7)	0.9(7)	3.3(7)
C4	36.5(12)	36.2(12)	26.8(11)	1.0(9)	-7.1(9)	-7.4(10)
C6	30.4(11)	37.1(12)	23.8(11)	6.3(9)	0.0(8)	1.9(9)
C5	30.6(11)	39.4(13)	34.6(12)	1.3(10)	-7.0(9)	11.9(10)
C7	19.6(9)	21.2(9)	26.2(10)	-2.1(8)	1.0(9)	0.9(7)
C8	21.7(9)	18.0(9)	25.8(10)	1.5(7)	1.9(0)	4.2(7)
C13	24.5(10)	19.4(9)	23.5(10)	4.0(7)	0.1(0)	4.9(7)
C9	25.7(10)	19.4(9)	29.5(11)	4.1(8)	2.1(8)	0.2(8)
C10	39.1(15)	55.3(18)	107(3)	42.3(18)	4.0(8)	-1.2(13)
C15	23.1(9)	17.4(9)	17.7(9)	4.1(7)	8.4(16)	5.8(7)
C11	96(2)	27.6(13)	61.9(19)	6.5(12)	0.5(7)	10.3(14)
<u>C12</u>	78(2)	32.1(13)	47.3(16)	14.1(11)	-10.7(14)	-5.3(13)

Table 2: Anisotropic Displacement Parameters (×10⁴) **bam151 0**m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a *^2 U_{11} + ... + 2hka \times b \times U_{12}]$

Atom	Atom	Å	Atom	Atom	Å
Cu1	02	1.8909(12)	C31	C30	1.364(3)
Cu1	01	1.9079(13)	C31	C32	1.532(3)
Cu1	N1	1.9305(15)	C32	C33	1.524(3)
Cu1	N2	1.9475(15)	C32	C35	1.536(3)
O2	C43	1.299(2)	C32	C34	1.539(3)
01	C1	1.296(2)	C38	C39	1.534(3)
N1	C15	1.309(2)	C38	C40	1.535(3)
N1	C16	1.418(2)	C38	C41	1.535(3)
C3	C5	1.536(3)	C26	C25	1.424(3)
C3	C4	1.538(3)	C25	C18	1.435(3)
C3	C6	1.539(3)	C18	C17	1.418(3)
C3	C2	1.542(3)	C19	C20	1.431(3)
N4	C25	1.343(2)	C19	C24	1.434(3)
N4	C24	1.352(2)	C20	C21	1.356(3)
N3	C19	1.344(2)	C21	C22	1.416(3)
N3	C18	1.344(2)	C22	C23	1.368(3)
N2	C28	1.310(2)	C23	C24	1.425(3)
N2	C27	1.419(2)	C14	C15	1.414(3)
C16	C17	1.363(3)	C14	C13	1.425(3)
C16	C27	1.450(2)	C14	C1	1.434(3)
C27	C26	1.366(3)	C1	C2	1.443(3)
C28	C29	1.418(3)	C2	C7	1.381(3)
C29	C30	1.431(3)	C7	C8	1.421(3)
C29	C43	1.434(3)	C8	C13	1.359(3)
C43	C37	1.443(2)	C8	C9	1.534(3)
C37	C36	1.375(3)	C9	C10	1.519(3)
C37	C38	1.537(3)	C9	C11	1.536(3)
C36	C31	1.418(3)	C9	C12	1.536(3)

Table 3: Bond Lengths in Å for Cu[L].

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
02	Cul	01	89.19(5)	C31	C32	C34	108.48(17)
02	Cu1	N1	176.50(6)	C35	C32	C34	109.18(18)
01	Cu1	N1	93.26(6)	C39	C38	C40	107.49(17)
02	Cu1	N2	93.50(6)	C39	C38	C41	107.14(17)
01	Cul	N2	175.04(6)	C40	C38	C41	110.14(17)
N1	Cu1	N2	84.24(6)	C39	C38	C37	111.88(16)
C43	O2	Cu1	129.18(12)	C40	C38	C37	110.92(16)
C1	01	Cu1	128.99(12)	C41	C38	C37	109.19(16)
C15	N1	C16	121.28(15)	C27	C26	C25	120.61(17)
C15	N1	Cu1	124.84(12)	N4	C25	C26	119.25(17)
C16	N1	Cul	113.84(11)	N4	C25	C18	121.80(17)
C5	C3	C4	107.91(17)	C26	C25	C18	118.92(16)
C5	C3	C6	110.12(17)	N3	C18	C17	118.30(17)
C4	C3	C6	106.81(17)	N3	C18	C25	122.19(17)
C5	C3	C2	109.76(16)	C17	C18	C25	119.47(16)
C4	C3	C2	111.93(16)	N3	C19	C20	119.00(18)
C6	C3	C2	110.26(15)	N3	C19	C24	121.92(17)
C25	N4	C24	116.07(16)	C20	C19	C24	119.08(18)
C19	N3	C18	116.09(17)	C21	C20	C19	120.1(2)
C28	N2	C27	121.75(16)	C20	C21	C22	120.96(19)
C28	N2	Cu1	124.57(12)	C23	C22	C21	120.98(19)
C27	N2	Cul	113.63(11)	C22	C23	C24	120.0(2)
C17	C16	N1	125.35(17)	N4	C24	C23	119.18(18)
C17	C16	C27	120.23(17)	N4	C24	C19	121.92(17)
N1	C16	C27	114.35(15)	C23	C24	C19	118.91(17)
C26	C27	N2	126.27(16)	C16	C17	C18	120.60(17)
C26	C27	C16	120.14(16)	C15	C14	C13	116.33(16)
N2	C27	C16	113.53(15)	C15	C14	C1	123.08(17)
N2	C28	C29	126.28(17)	C13	C14	C1	120.43(17)
C28	C29	C30	116.47(17)	01	C1	C14	122.68(17)
C28	C29	C43	123.27(17)	01	C1	C2	119.92(16)
C30	C29	C43	120.15(16)	C14	C1	C2	117.39(16)
02	C43	C29	122.89(16)	C7	C2	C1	118.03(17)
O2	C43	C37	119.10(16)	C7	C2	C3	121.79(17)
C29	C43	C37	117.99(16)	C1	C2	C3	120.18(16)
C36	C37	C43	117.83(17)	C2	C7	C8	125.23(18)
C36	C37	C38	121.80(16)	C13	C8	C7	116.32(17)
C43	C37	C38	120.36(16)	C13	C8	C9	123.62(17)
C37	C36	C31	125.35(17)	C7	C8	C9	119.89(17)
C30	C31	C36	116.81(17)	C8	C13	C14	122.40(17)
C30	C31	C32	124.63(18)	C10	C9	C8	112.12(18)
C36	C31	C32	118.54(16)	C10	C9	C11	108.3(2)
C31	C30	C29	121.82(18)	C8	C9	C11	108.79(17)
C33	C32	C31	112.48(16)	C10	C9	C12	107.4(2)
C33	C32	C35	108.61(18)	C8	C9	C12	112.64(17)
C31	C32	C35	109.85(16)	C11	C9	C12	107.3(2)
C33	C32	C34	108.18(18)	N1	C15	C14	126.45(17)

Table 4: Bond Angles in ° for **Cu[L]**.

UO₂[di-tert-butylsal-phenazine] Crystal Data and Experimental

Compound

CCDC	1019622
Formula	C ₄₈ H 62N ₄ O ₆₅
$D_{calc.}$ / g cm ⁻³	1.370
μ/mm^{-1}	3.278
Formula Weight	1037.06
Colour	Red
Shape	Prism
Size/mm ³	$0.69 \times 0.19 \times 0.07$
T/K	180(2)
Crystal System	monoclinic
Space Group	$P 2_1/n$
a/A	18.0525(18)
b/A	13.4858(13)
c/A	20.817(2)
$lpha/^{\circ}$	90
$\beta/^{\circ}$	97.379(3)
$\gamma/^{\circ}$	90
V/A^3	5026.1(9)
Ζ	4
$\Theta_{min}/2$	1.60
$\Theta_{max}/^{\circ}$	24.55
Measured Refl.	26745
Independent Refl.	8268
Reflections Used	6341
R _{int}	0.0669
Parameters	481
Restraints	7
Largest Peak Largest Peak	2.544
Deepest Hole	-2.230
GooF	1.055
$wR_2(all data)$	0.1427
wR_2	0.1371
$R_1(\text{all data})$	0.0717
R_1	0.0550

 $UO_2[L]$

Crystal Data. $C_{48}H_{62}N_4O_{6.5}U$, M = 1037.06, monoclinic, $P2_1/n$ (No. 14, a = 18.0525(18) A, b = 13.4858(13) A, c = 20.817(2) A, $\beta = 97.379^{\circ}$, $a = \gamma = 90^{\circ}$, $V = 5026.1(9)A^3$, T = 180(2) K, Z = 4, μ (Mo Ka) = 3.278, 26745 reflections measured, 8268 unique (*Rint* = 0.0669) which were used in all calculations. The final wR_2 was 0.1427 (all data) and R_1 was 0.0550 (> $2\sigma(I)$). $C_{48}H_{62}N_4O_{6.5}U$

Experimental. Single crystals of

(UO₂[di-tert-butylsal-phenazine]) were obtained by recrystallization using slow evaporation from a concentrated solution. A suitable crystal ($0.69 \times 0.19 \times 0.07mm^3$) was selected and mounted on a borosilicate fiber using paratone N as the cryoprotectant on a Bruker Apex diffractometer. The crystal was kept at 180(2) K during data collection. Using Bruker Apex2, the structure was solved with the ShelXP structure solution program, using direct methods. The model was refined with the ShelXL refinement package using least squares minimization. SQUEEZE was performed with a total potential solvent area volume found to be 1,731.1 Å³.

Atom	X	У	Z	U(eq)
U1	1461.70(17)	1587.0(2)	1713.00(16)	30.07(12)
01	2707(3)	1708(4)	1701(3)	41.8(15)
02	387(3)	960(4)	1960(3)	39.0(15)
N3	1129(4)	6500(5)	765(3)	36.0(17)
N4	-398(4)	5990(5)	717(3)	33.0(17)
N1	1779(4)	3051(5)	1029(3)	31.2(16)
C24	-182(5)	6936(6)	654(4)	33(2)
C7	4393(5)	1677(7)	950(5)	44(2)
220	773(6)	8215(6)	667(4)	41(2)
C17	1449(5)	4778(6)	871(4)	33(2)
226	-46(4)	4295(6)	914(4)	32(2)
C19	586(5)	7192(6)	702(4)	32(2)
C14	3039(5)	2604(6)	814(4)	34(2)
230	-638(5)	1330(6)	1171(4)	30.5(19)
C18	910(5)	5551(6)	800(4)	30.7(19)
227	491(4)	3581(6)	991(4)	31(2)
231	-1375(5)	1137(6)	887(4)	35(2)
216	-1373(3) 1258(5)	3832(6)	947(4)	304(19)
738	1238(3)	-21(6)	1940(4)	33(2)
225	-721(5)	5298(6)	799(4)	30.6(19)
71 71	154(4)	1888(6)	1301(4)	32(2)
78 78	3200(5)	2393(7)	457(5)	41(2)
715	4254(5)	3152(6)	738(4)	36(2)
737	2360(5)	-162(7)	1633(4)	30(2)
773	-1445(5)	102(7)	546(5)	$\frac{3}{44(2)}$
-2-5 	-731(5)	/000(/)	1277(4)	$\frac{44(2)}{37(2)}$
- <u>-</u> -27	3919(5)	1412(0)	1377(4) 1004(4)	$\frac{37(2)}{38(2)}$
720	-1786(5)	582(7) (47(9)	1094(4) 2512(5)	$\frac{38(2)}{48(3)}$
- <u>-</u>	-402(6)	-64/(8)	2313(3)	40(3)
20	-319(5)	2231(6)	900(4) 562(5)	31.1(19)
-21 72	244(6)	8902(7)	302(3)	43(2)
23 70	4117(5)	593(7)	1880(3)	43(2)
29 700	4833(6)	2613(8)	0(5)	$\frac{5}{(3)}$
22	-517(6)	8644(6)	497(5)	48(3)
213	3572(5)	2841(7)	407(5)	41(2)
.33	-2580(5)	137(8)	/88(5)	54(3)
.33	-3123(7)	407(14)	1248(7)	110(6)
.41	301(7)	-1194(9)	2361(6)	69(3) 86(4)
.42	-946(8)	-1429(10)	2694(7)	86(4)
	5007(9)	1664(11)	-342(8)	10/(6)
240	-184(8)	8(10)	3108(6)	83(4)
	5560(8)	2948(13)	407(7)	102(5)
234	-2701(8)	687(14)	160(7)	117(6)
212	-2791(8)	3374(15)	-487(10)	167(11)
25	4383(10)	-308(8)	1699(5)	67(3)
.4	3377(1) 4018(7)	938(9)	2567(5)	64(3)
6	4018(7)	226(10)	1897(6)	78(4)
J8	4910(6)	779(4)	1045(3)	41.9(15)
03	1413(4)	2444(4)	2370(3)	44.1(16)
C36	1501(4)	-951(11)	626(10)	134(8)
N2	-2637(7)	2573(5)	1153(3)	28.1(15)
243	352(4)	764(6)	1692(4)	33(2)
)5	-305(5)	368(6)	2543(4)	63(2)

Table 5: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (A²×10³) for **UO₂[L]**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{LJ} tensor.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	\mathbf{U}_{13}	U ₁₂
U1	28.85(19)	28.19(18)	32 17(19)	3.41(15)	0.03(13)	0.44(
01	42(4)	39(4)	45(4)	12(3)	11(3)	13(3)
02	37(4)	40(4)	39(4)	14(3)	0(3)	-2(3)
N3	47(5)	26(4)	36(4)	5(3)	6(3)	0(3)
N4	27(4)	29(4)	42(4)	-1(3)	-1(3)	4(3)
N1	26(4)	28(4)	39(4)	2(3)	2(3)	6(3)
C24	42(5)	27(4)	28(5)	-5(3)	-1(4)	13(4)
C7	38(5)	45(6)	49(6)	3(5)	8(5)	12(4)
C20	58(6)	26(5)	39(6)	2(4)	9(5)	-1(4)
C17	35(5)	25(4)	39(5)	-6(4)	2(4)	3(4)
C26	16(4)	33(5)	48(6)	1(4)	3(4)	-1(4)
C19	40(5)	29(5)	25(5)	-3(4)	1(4)	4(4)
C14	29(5)	34(5)	39(5)	7(4)	8(4)	2(4)
C30	25(4)	31(5)	36(5)	3(4)	3(4)	4(3)
C18	41(5)	32(5)	18(4)	7(3)	1(4)	-1(4)
C27	26(4)	20(4)	46(5)	4(4)	0(4)	7(3)
C31	37(5)	32(5)	37(5)	-6(4)	6(4)	-1(4)
C16	30(5)	23(4)	36(5)	2(4)	-2(4)	8(4)
C38	35(5)	35(5)	31(5)	3(4)	6(4)	-2(4)
C25	27(5)	32(5)	32(5)	4(4)	-1(4)	2(4)
C1	34(5)	34(5)	30(5)	0(4)	12(4)	2(1) 2(4)
C8	37(5)	44(5)	43(6)	2(4)	16(4)	5(4)
C15	42(5)	28(5)	39(5)	$\frac{-(1)}{1(4)}$	5(4)	5(4)
C37	33(5)	40(5)	47(6)	0(4)	14(4)	-11(4)
C23	37(5)	39(5)	54(6)	5(4)	0(5)	7(4)
C2	34(5)	35(5)	40(5)	4(4)	7(4)	1(4)
C32	29(5)	39(5)	44(6)	-10(4)	3(4)	-1(4)
C39	50(6)	53(6)	42(6)	12(5)	6(5)	-12(5)
C28	32(5)	34(5)	28(5)	0(4)	4(4)	-1(4)
C21	58(7)	24(5)	49(6)	-1(4)	15(5)	6(5)
C3	34(5)	47(6)	50(6)	14(5)	7(4)	10(4)
C9	51(7)	66(7)	57(7)	10(6)	20(5)	5(6)
C22	63(7)	22(5)	59(7)	1(4)	5(5)	17(4)
C13	43(6)	35(5)	45(6)	7(4)	11(5)	0(4)
C33	35(6)	62(6)	64(7)	1(5)	3(5)	-6(5)
C35	44(8)	183(17)	106(12)	-4(12)	16(8)	-13(9)
C41	85(9)	61(7)	60(8)	26(6)	6(7)	15(7)
C42	86(10)	90(10)	79(9)	37(8)	0(8)	-34(8)
C11	119(13)	119(13)	95(12)	-30(10)	64(10)	-10(10)
C40	102(11)	99(10)	44(7)	4(7)	-2(7)	-17(8)
C10	76(10)	158(15)	80(10)	-8(10)	43(8)	-17(8)
C34	65(9)	188(18)	86(11)	35(11)	-31(8)	-43(10)
C12	113(14)	230(20)	190(20)	157(18)	109(14)	-55(10)
C5	103(10)	40(6)	57(7)	9(5)	7(7)	91(14)
C4	86(9)	77(8)	27(6)	13(5)	1(6)	$\delta(0)$
C6	57(7)	92(9)	87(9)	39(8)	18(7)	22(7)
08	55(4)	40(4)	32(3)	0(3)	6(3)	43(7)
03	47(4)	40(4)	47(4)	-10(3)	8(3)	/(3)
C36	49(8)	76(9)	260(20)	-57(13)	-33(11)	0(3)
N2	24(4)	24(4)	36(4)	6(3)	3(3)	-9(/)
C43	30(5)	32(5)	35(5)	-1(4)	0(4)	$\frac{1(3)}{7(4)}$
05	54(5)	67(5)	66(5)	22(A)	-2(4)	-5(4)

Table 6: Anisotropic Displacement Parameters (×10⁴) **UO**₂[**L**]. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a *^2 U_{11} + ... + 2hka \times b \times U_{12}]$

Atom	Atom	Length/A	Atom	Atom	Length/A
U1	08	1.760(6)	C30	C28	1.432(11)
U1	O3	1.786(6)	C18	C25	1.406(11)
U1	O2	2.237(6)	C27	N2	1.431(10)
U1	01	2.258(6)	C27	C16	1.438(11)
U1	O5	2.454(6)	C31	C32	1.362(12)
U1	N1	2.542(7)	C38	C37	1.392(12)
U1	N2	2.558(6)	C38	C43	1.433(11)
01	C1	1.317(10)	C38	C39	1.514(12)
02	C43	1.327(10)	C1	C2	1.438(12)
N3	C18	1.344(10)	C8	C13	1.364(12)
N3	C19	1.348(11)	C8	C9	1.532(13)
N4	C24	1.345(11)	C37	C32	1.415(13)
N4	C25	1.360(10)	C23	C22	1.354(13)
N1	C15	1.284(11)	C2	C3	1.532(12)
N1	C16	1.408(10)	C32	C33	1.528(13)
C24	C23	1.417(12)	C39	C42	1.520(14)
C24	C19	1.420(12)	C39	C40	1.530(15)
C7	C2	1.359(13)	C39	C41	1.535(15)
C7	C8	1.407(13)	C28	N2	1.308(10)
C20	C21	1.327(13)	C21	C22	1.407(14)
C20	C19	1.424(11)	C3	C6	1.521(13)
C17	C16	1.336(11)	C3	C4	1.538(14)
C17	C18	1.422(11)	C3	C5	1.550(14)
C26	C27	1.361(11)	C9	C12	1.471(17)
C26	C25	1.429(11)	C9	C11	1.517(17)
C14	C13	1.399(12)	C9	C10	1.535(17)
C14	C1	1.403(12)	C33	C35	1.501(16)
C14	C15	1.423(12)	C33	C36	1.506(16)
C30	C43	1.396(11)	C33	C34	1.508(17)
C30	C31	1.410(12)			

Table 7: Bond Lengths in A for $UO_2[L]$.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
08	U1	03	177.9(3)	C37	C38	C39	121.7(8)
08	U1	02	89.4(3)	C43	C38	C39	122.1(8)
03	U1	02	91.1(3)	N4	C25	C18	122.0(7)
08	U1	01	89.2(3)	N4	C25	C26	118.3(7)
03	U1	01	91.1(3)	C18	C25	C26	119.7(7)
02	Ū1	01	157.6(2)	01	C1	C14	119.3(7)
08	U1	05	96.8(3)	01	C1	C2	121.4(7)
03	U1	05	85 3(3)	C14	C1	C2	119.2(7)
02	U1	05	79 2(2)	C13	C8	C7	115.8(8)
01	U1	05	78.8(2)	C13	C8	C9	123 2(9)
08	U1	N1	91.8(3)	C7	C8	C9	121.0(8)
03	U1	N1	86 4(3)	N1	C15	C14	129 4(8)
02	U1	N1	1334(2)	C38	C37	C32	125.5(8)
01	U1	N1	69 0(2)	C22	C23	C24	119 5(9)
05	U1	N1	1464(2)	C7	C2	C1	116.5(8)
08	U1	N2	90 3(3)	C7	C^2	C3	121 7(8)
03	U1	N2	88.0(3)	C1	C^2	C3	121.7(8)
$\frac{02}{02}$	U1	N2	69 5(2)	C31	C32	C37	1161(8)
01	U1	N2	132.8(2)	C31	C32	C33	1234(9)
05	U1	N2	132.8(2) 147 8(2)	C37	C32	C33	120.5(8)
N1	U1	N2	63.9(2)	C38	C39	C42	112.9(9)
C1	01	U1	140 8(6)	C38	C39	C40	110 3(9)
C43	02	U1	140.8(5)	C42	C39	C40	107.9(9)
C18	N3	C19	116 7(8)	C38	C39	C41	110 3(8)
C24	N4	C25	116.5(7)	C42	C39	C41	107.2(10)
C15	N1	C16	115 9(7)	C40	C39	C41	108.1(10)
C15	N1	U1	127 1(5)	N2	C28	C30	127 2(8)
C16	N1	U1	117.0(5)	C20	C21	C22	121.1(9)
N4	C24	C23	119.3(8)	C6	C3	C2	112.9(8)
N4	C24	C19	121.1(7)	C6	C3	C4	107.4(9)
C23	C24	C19	119.6(8)	C2	C3	C4	111.9(8)
C2	C7	C8	126.1(9)	C6	C3	C5	107.0(9)
C21	C20	C19	120.9(9)	C2	C3	C5	108.6(8)
C16	C17	C18	121.9(8)	C4	C3	C5	108.9(9)
C27	C26	C25	119.9(7)	C12	C9	C11	109.3(14)
N3	C19	C24	122.0(7)	C12	C9	C8	112.9(9)
N3	C19	C20	120.1(8)	C11	C9	C8	109.0(9)
C24	C19	C20	117.9(8)	C12	C9	C10	109.9(13)
C13	C14	C1	120.1(8)	C11	C9	C10	107.0(11)
C13	C14	C15	117.5(8)	C8	C9	C10	108.4(9)
C1	C14	C15	122.3(8)	C23	C22	C21	120.9(9)
C43	C30	C31	120.9(8)	C8	C13	C14	122.4(9)
C43	C30	C28	123.0(8)	C35	C33	C36	110.4(12)
C31	C30	C28	115.2(8)	C35	C33	C34	108.7(12)
N3	C18	C25	121.5(8)	C36	C33	C34	106.5(13)
N3	C18	C17	120.1(8)	C35	C33	C32	109.6(10)
C25	C18	C17	118.3(7)	C36	C33	C32	109.8(9)
C26	C27	N2	123.7(7)	C34	C33	C32	111.9(9)
C26	C27	C16	120.2(7)	C28	N2	C27	116.8(7)
N2	C27	C16	116.0(6)	C28	N2	U1	126.3(5)
C32	C31	C30	121.9(9)	C27	N2	U1	116.8(5)
C17	C16	N1	123.3(8)	O2	C43	C30	120.4(7)
C17	C16	C27	119.8(7)	O2	C43	C38	120.3(8)
N1	C16	C27	116.7(7)	C30	C43	C38	119.3(8)
C37	C38	C43	116.2(8)				

Table 8: Bond Angles in ° for **bam149_0m.sq**.

References

(1) Deal, K. S.; Easley, C. J. *Anal. Chem. (Washington, DC, U. S.)* **2012**, *84*, 1510.

(2) Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. *Anal. Chem.* **1998**, *70*, 4974.

(3) Sheldrick, G. M. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *A64*, 112.

(4) Bruker; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.

(5) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.;

Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.