Supporting Information for:

Cobalt-catalyzed ammonia borane dehydrocoupling and transfer hydrogenation under aerobic conditions

Justin K. Pagano, John P. W. Stelmach, and Rory Waterman*

Department of Chemistry, University of Vermont, Burlington, VT 05405-0125

rory.waterman@uvm.edu

Experimental considerations	2–3
Determination of H ₂ volume produced	4–5
Table S1: Concentration controlled amine borane dehydrocoupling by 1	6
Table S2: Concentration controlled amine borane dehydrocoupling by 2	7
$CpCo(CO)I_2 + AB$	8
$Cp*Co(CO)I_2 + AB$	9–10
H ₂ collection reaction	11–12
IR spectrum for H ₂ collection reaction	13
Control reaction	14
Transfer hydrogenation reactions	15–38
References	39

Experimental Considerations

General Considerations

All manipulations were performed under an inert atmosphere of N₂ using Schlenk line or glovebox techniques using oxygen-free, anhydrous solvents unless otherwise specified. NMR spectra were recorded using a Bruker AXR 500 MHz spectrometer, using an external reference of 10 % BF₃•Et₂O in CDCl₃ for ¹¹B NMR experiments and residual solvent resonances for ¹H and ¹³C{¹H} experiments (δ 3.58 and δ 67.31, respectively). GC spectra were collected using a Varian Saturn 2100T gas chromatograph. Ammonia borane was purchased from Sigma Aldrich and opened August 2014, after which it was stored at -35 °C under an inert atmosphere of N₂. THF- d_8 was purchased from Cambridge Isotopes and was stored over Na at -35 °C in the dark under an inert atmosphere of N₂. All other reagents were obtained from commercial suppliers and dried by conventional means as necessary. Stock solutions of CpCo(CO)I₂ (1.0 mM, 2.0 mM, 4.0 mM), Cp*Co(CO)I₂ (1.0 mM, 2.0 mM, 4.0 mM), and NH₃BH₃ (1.0 M, 2.0 M, 4.0 M) were prepared in a glovebox using anhydrous THF, volumetric glassware, and were stored at -30 °C in the dark prior to use. $CpCo(CO)I_2$, ¹ $Cp*Co(CO)I_2$, ¹ and $[Cp*Co(CO)I][PF_6]^2$ were prepared according to Borazine,³ borazane,³ cyclodiborazane,³ procedures. *B*literature (cyclodiborazanyl)aminoborohydride,⁴ polyborazylene,³ and polyaminoborane⁵ were identified by their reported ¹¹B NMR chemical shifts as compared to the unreacted ammonia borane as an internal reference.

Safety note: Handling amine boranes represents a series of potential hazards. A resource to help identify potential safety issues is <u>http://h2bestpractices.org/docs/nbh_h2_storage_survey.pdf</u>

(1) Typical procedure for dehydrocoupling reactions

Stock solutions of Cp*Co(CO)I₂ (0.20 mL, 2.0 mM) in THF and NH₃BH₃ (0.20 mL, 2.0 M) in THF were added to a PTFE-sealed NMR tube (quartz or borosilicate) in an N₂-filled glovebox, whereupon immediate gas evolution and a color change from dark red to light green occurred. After two freeze-pump-thaw cycles, an initial ¹¹B{¹H} NMR spectrum was collected. The solution was then heated to 65 °C, and ¹¹B{¹H} NMR spectra were collected at 2 h, 4 h, 6 h, 8 h, and 24 h intervals. After each NMR experiment, an additional freeze-pump-thaw cycle was performed to remove H₂.

(2) Typical procedure for aerobic dehydrocoupling reactions

A mixture of solutions of Cp*Co(CO)I₂ (0.40 mL, 2.0 mM) in THF and NH₃BH₃ (0.40 mL, 2.0 M) in THF were measured in an N₂ filled glovebox, then transferred in air and thoroughly mixed before being added to a Schlenk flask fitted with a condenser, septum, and venting needle. An initial aliquot of the reaction mixture was analyzed by ¹¹B{¹H} NMR, and the reaction mixture was heated to 65 °C. Additional ¹¹B{¹H} NMR spectra were collected using a quartz NMR tube at 1 h, 1.5 h, 2 h, and 3 h intervals.

(3) Typical procedure for transfer hydrogenation reactions

A stock solution of Cp*Co(CO)I₂ (0.20 mL, 2.0 mM) in THF was added to the unsaturated organic (0.0690 mmol) followed by addition of a stock solution of NH₃BH₃ (0.20 mL, 2.0 M). This solution was quickly transferred to a PTFE-sealed NMR tube (quartz or borosilicate) in an N₂-filled glovebox, whereupon immediate gas evolution and a color change from dark red to light green occurred. Initial ¹¹B{¹H} and ¹³C{¹H} NMR spectra were collected, then the solution was heated to 65 °C. Additional NMR spectra were collected after 3 h, 6 h, and 24 h intervals.

(4) Typical procedure for aerobic transfer hydrogenation reactions

A stock solution of Cp*Co(CO)I₂ (0.40 mL, 2.0 mM) in THF was added to the unsaturated organic (0.138 mmol) which was then added to a stock solution of NH₃BH₃ (0.40 mL, 2.0 M) in air before being thoroughly mixed and transferred to a Schlenk flask fitted with a condenser, septum, and venting needle. Initial ¹¹B{¹H} and ¹³C{¹H} NMR spectra were collected, then the solution was heated to 65 °C. Additional NMR spectra were collected using a quartz NMR tube after 3 h, 6 h, and 24 h intervals.

Determination of H₂ volume produced

A mixture of solutions of Cp*Co(CO)I₂ (0.40 mL, 2.0 mM) in THF and NH₃BH₃ (0.40 mL, 2.0 M) in THF were measured in an N₂ filled glovebox, then transferred in air and thoroughly mixed before being added to a Schlenk flask fitted with a condenser that was connected to a gas burette (Figure S.1). The reaction was then heated to 65 °C and allowed to run for 4 h, whereupon there was no further visible gas evolution. The actual pressure of H₂ gas evolved was determined as follows:

 $P_{H_2} = P_{atm} - P_{THF} - P_{column} - P_{H_2O}$

Where P_{H_2} is the actual pressure of H_2 gas, P_{atm} is the atmospheric pressure, P_{THF} is the vapor pressure of THF at the measured ambient temperature (20–22 °C), P_{column} is the pressure caused by the weight of water in the gas burette, and P_{H_2O} is the vapor pressure of H_2O measured at ambient temperature. The moles of H_2 produced were calculated using the ideal gas law. Turnover number (TON) was determined by the following equation.⁶

 $TON = n_{H2}/n_{cat}$

Turnover frequency (TOF) is defined as the TON for the first hour of the reaction.

<u>Figure S-1</u>: Experimental setup for determination of moles of H_2 gas produced

Catalyst Concentration (mM)	1.0	1.0	1.0	2.0	2.0	2.0	4.0	4.0	4.0
NH ₃ BH ₃ Concentration (M)	1.0	2.0	4.0	1.0	2.0	4.0	1.0	2.0	4.0
Conversion (%)	98	97	97	99	98	96	99	98	98

Table S-1: Concentration controlled amine borane dehydrocoupling by 1

Reaction conditions: 0.20 mL 1 in THF, 0.20 mL NH₃BH₃ in THF, 65 °C, 2 freeze-pump-thaw cycles performed

before heating and every 2 h thereafter, 24 h

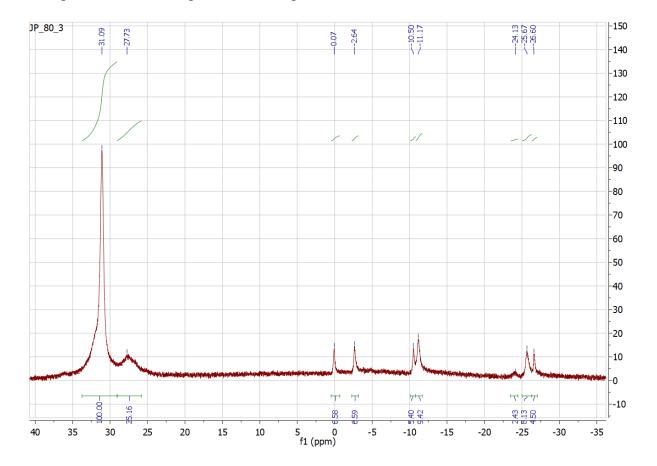
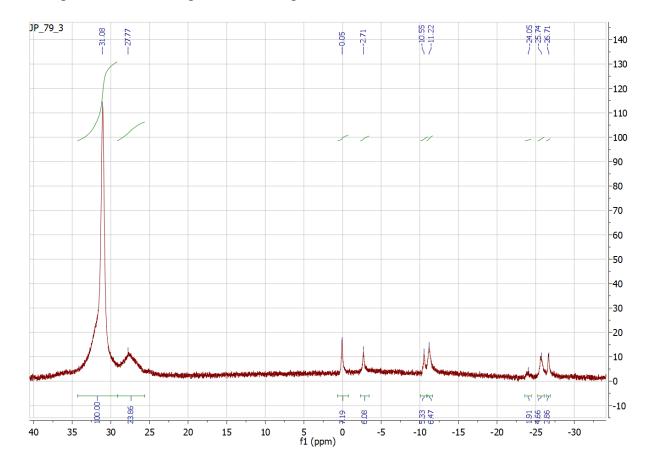

Catalyst Concentration (mM)	1.0	1.0	1.0	2.0	2.0	2.0	4.0	4.0	4.0
NH ₃ BH ₃ Concentration (M)	1.0	2.0	4.0	1.0	2.0	4.0	1.0	2.0	4.0
Conversion (%)	99	96	98	99	97	97	98	98	98

Table S-2: Concentration controlled amine borane dehydrocoupling by 2

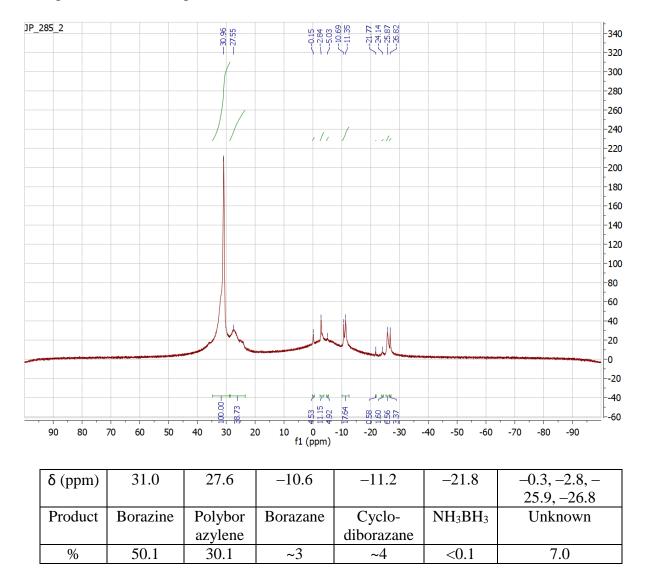
Reaction conditions: 0.20 mL 2 in THF, 0.20 mL NH₃BH₃ in THF, 65 °C, 2 freeze-pump-thaw cycles performed

before heating and every 2 h thereafter, 24 h


$\underline{CpCo(CO)I_2 + AB}$

Example ¹¹B{¹H} NMR spectrum, THF, quartz PTFE-sealed NMR tube

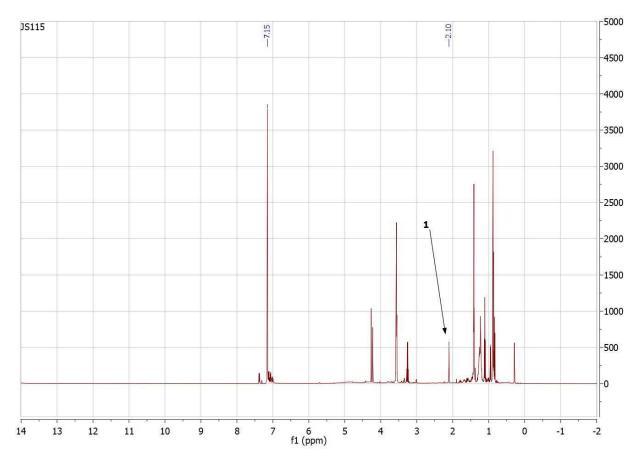
δ (ppm)	31.1	27.7	-10.5	-11.2	0, -2.6, -24.1, -25.7, -26.6
Product	Borazine	Polyborazylene	Borazane	Cyclodiborazane	Unknown
%	60.0	21.5	5.1	2.2	11.2
Conversion					

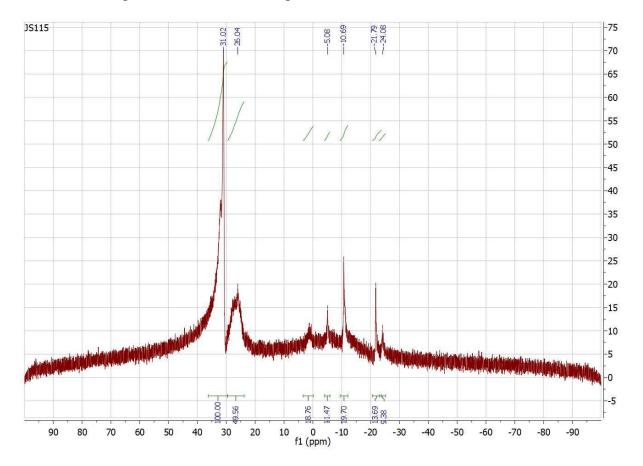

$Cp*Co(CO)I_2 + AB$

Example ¹¹B{¹H} NMR spectrum, THF, quartz PTFE-sealed NMR tube

δ (ppm)	31.1	27.8	-10.6	-11.2	0, -2.71, -24.1 -25.7, -26.7
Product	Borazine	Polyborazylene	Borazane	Cyclodiborazane	Unknown
%	59.4	20.1	3.2	3.8	13.5
Conversion					

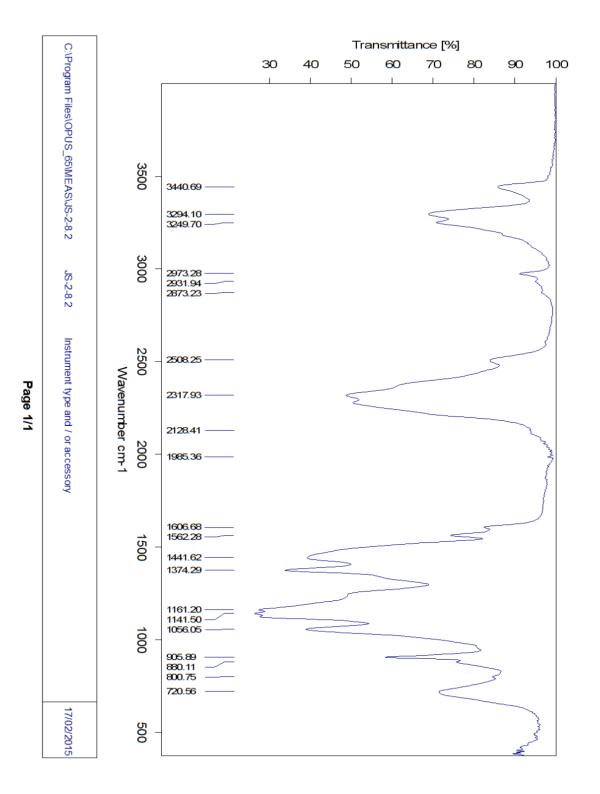
<u>Open reflux schlenk $Cp*Co(CO)I_2 + AB</u>$ </u>




Example ¹¹B{¹H} NMR spectrum, THF, borosilicate NMR tube

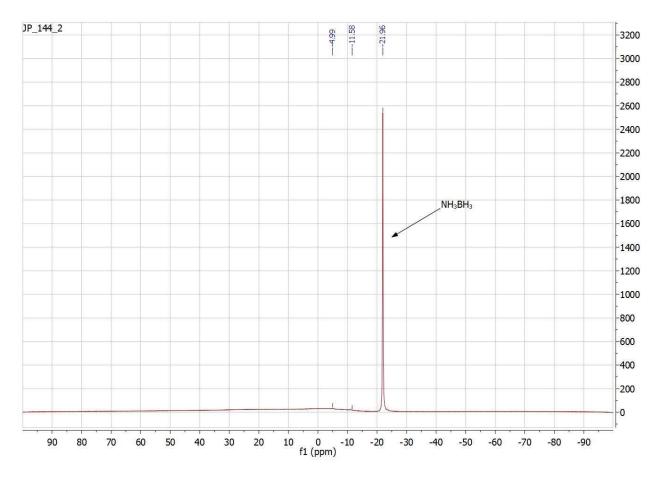
B-(cyclodiborazanyl)aminoborohydride (δ –5.0, –11.4, –24.1) appears to be present but overlapping resonance with cyclodiborazane and low intensity resonances make an assessment of concentration difficult.

H₂ collection NMR spectra


¹H NMR spectrum – final, THF-*d*₈ quartz NMR tube

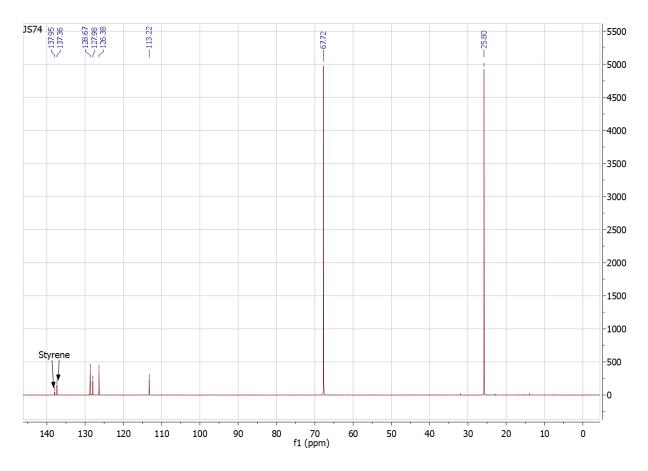
¹¹B{¹H} NMR spectrum – final, THF- d_8 quartz NMR tube

δ (ppm)	31.0	26.0	-5.1, -10.7, -24.1	-21.8
Product	Borazine	Polyborazylene	В-	NH ₃ BH ₃
			(cyclodiborazanyl)aminoborohydride	
%	45.0	29.5	20.3	5.2
Conversion				

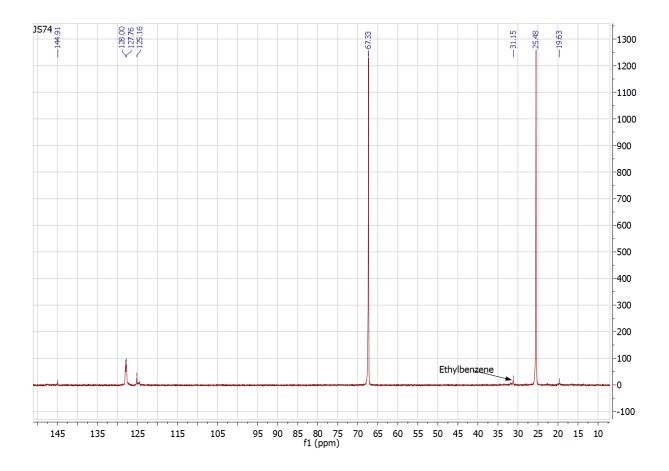


IR spectrum for H₂ collection experiment

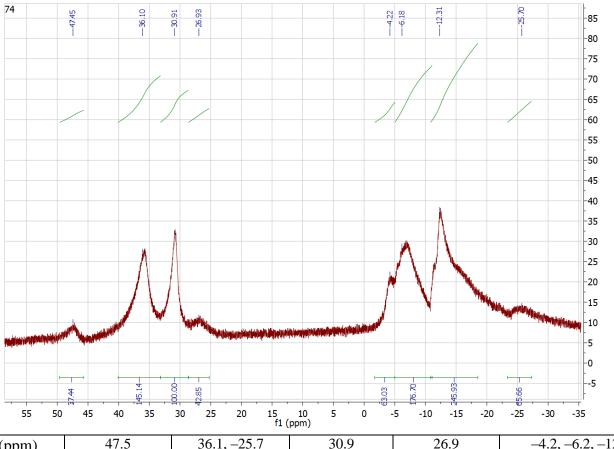
Control reaction


Reaction conditions: 0.40 mL NH₃BH₃ (2.0 M in THF), 65 °C, 7 d

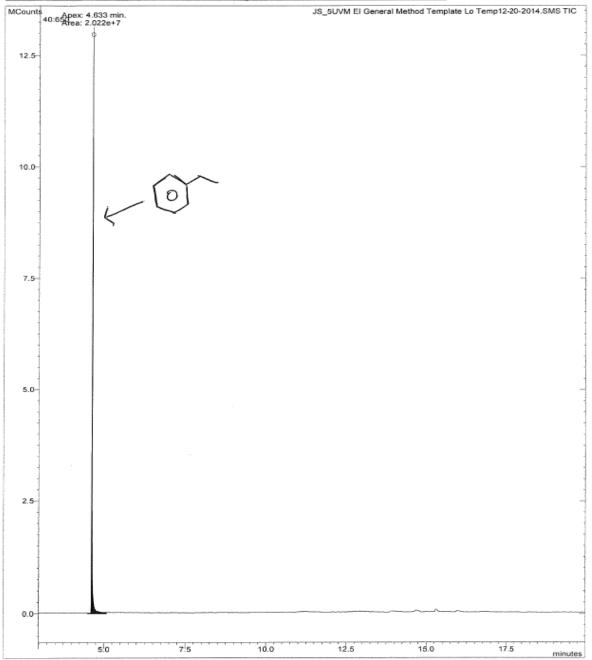
¹¹B{¹H} NMR spectrum, quartz tube, THF



$Cp*Co(CO)I_2 + AB + Styrene$

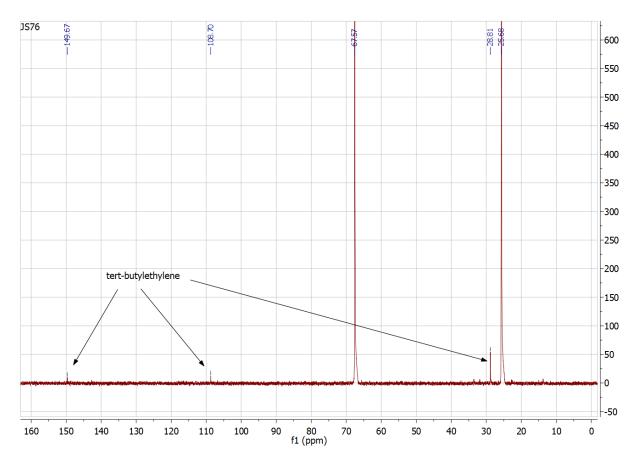

$^{13}C\{^{1}H\}$ NMR spectra – Initial, THF

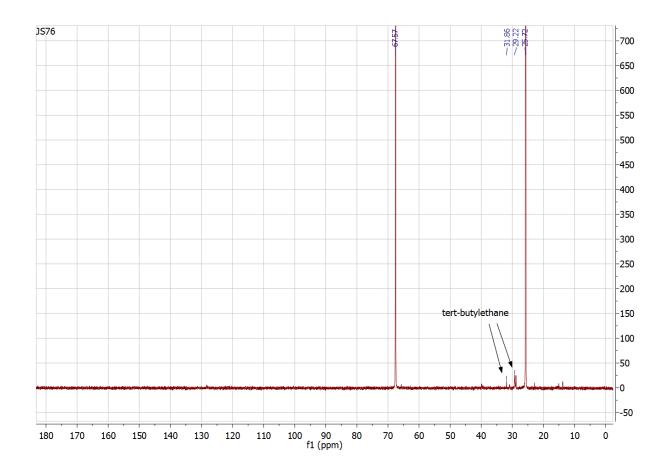
¹³C{¹H} NMR spectrum –Final, THF

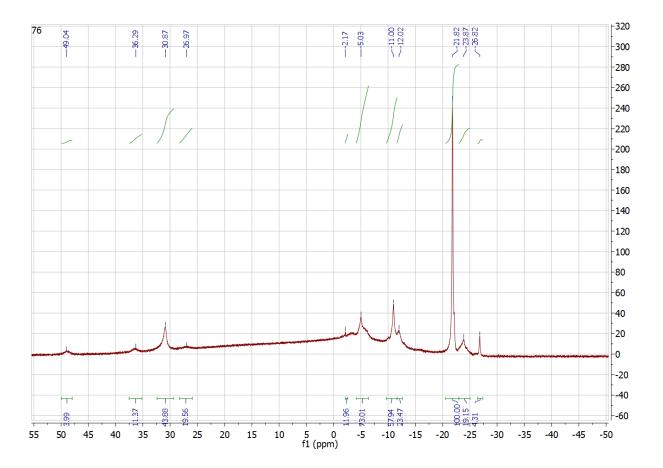


¹¹B{¹H} NMR spectrum – Final, THF, borosilicate glass NMR tube

δ (ppm)	47.5	36.1, -25.7	30.9	26.9	-4.2, -6.2, -12.3
Product	Hydroborlyated	Polyaminoborane	Borazine	Polyborazalyne	Unknown products
	species				_
%	4.2	24.2	11.4	4.9	55.3
Conversion					

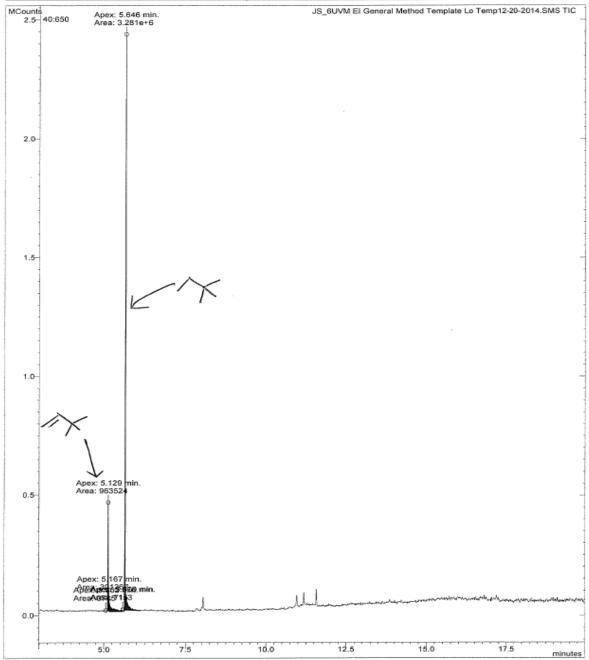

GC Spectrum


MS Data Review Active Chromatogram Plot - 1/6/2015 8:03 AM


$\underline{Cp*Co(CO)I_2 + AB + tert-butylethylene}$

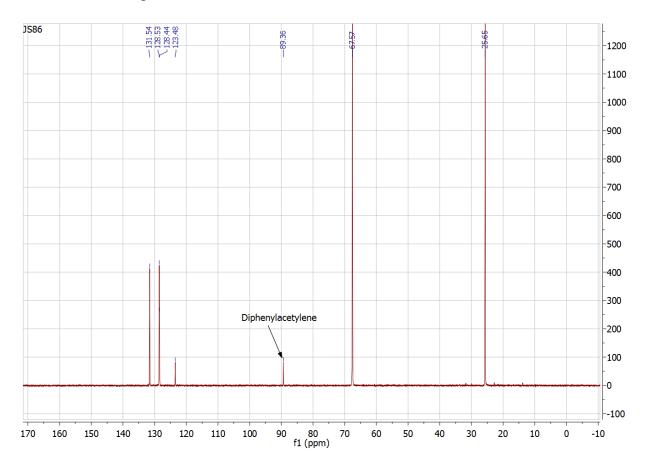
¹³C{¹H} NMR spectrum – initial, THF

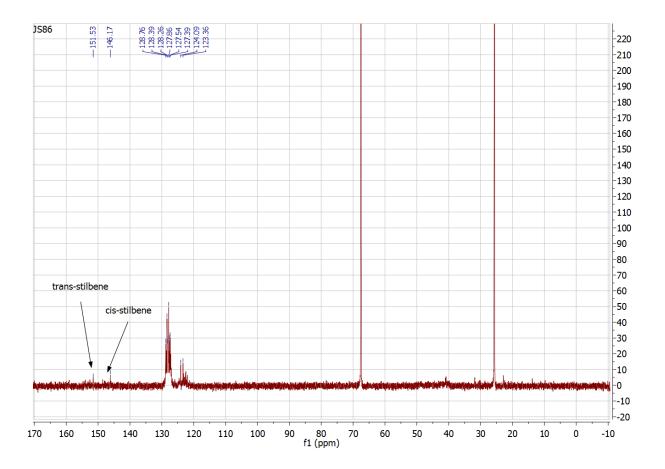
¹³C{¹H} NMR spectrum – final, THF

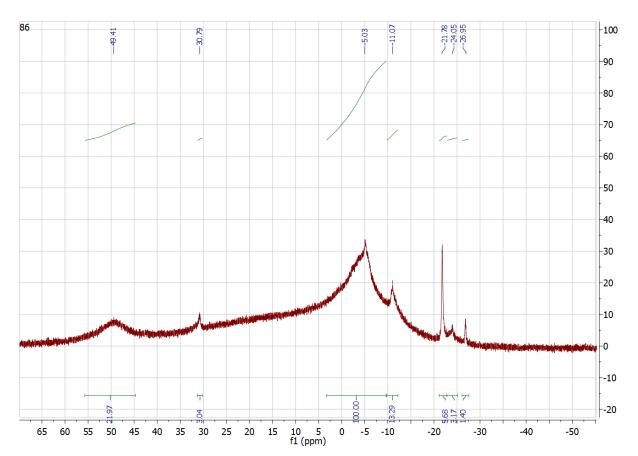


¹¹B{¹H} NMR spectrum – final, THF, borosilicate glass NMR tube

δ (ppm)	49.0	36.3, -26.8	30.9	27.0	-5.0, -11.0, -23.9	-21.8	-2.2, -
							12.0
Product	Hydroborylated	Polyaminoborane	Borazine	Polyborazylene	В-	NH ₃ BH ₃	Unknown
	species	-			(cyclodiborazanyl)aminoborohydride		
%	1.1	4.3	11.9	5.3	40.7	27.1	9.6
Conversion							

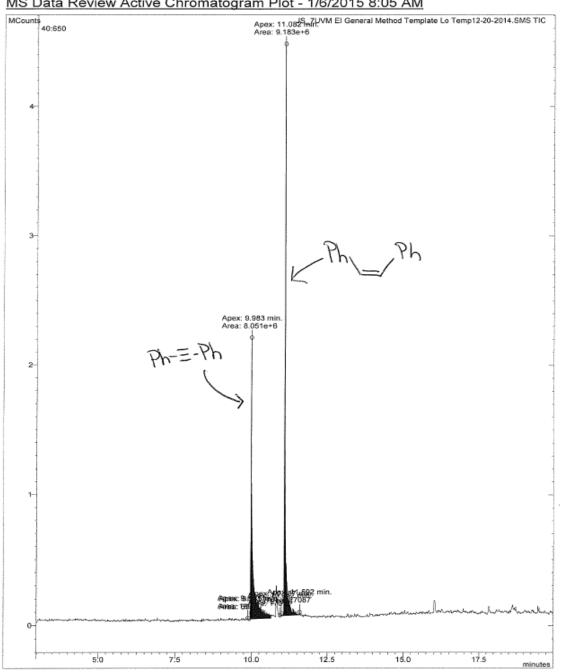

GC Spectrum


MS Data Review Active Chromatogram Plot - 1/6/2015 8:04 AM


$Cp*Co(CO)I_2 + AB + Diphenylacetylene$

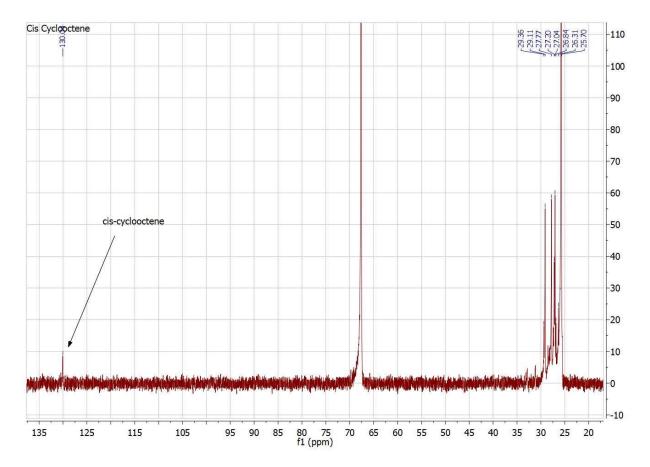
¹³C{¹H} NMR spectrm – initial, THF

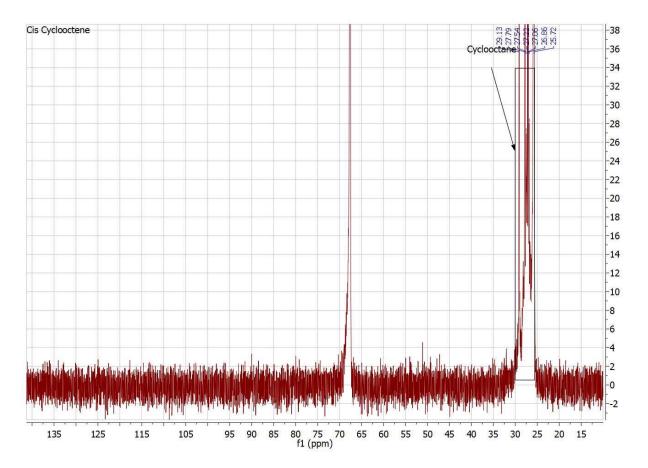
¹³C{¹H} NMR spectrum – final, THF



¹¹B{¹H} NMR spectrum – final, THF, borosilicate NMR tube

δ (ppm)	49.4	30.8	-5.0, -11.1, -	-21.8	-27.0
			24.1		
Product	Hydroborylated species	Polyaminobora ne	<i>B</i> - (cyclodiborazany l)aminoborohydr ide	NH ₃ BH ₃	Unknown
% Conversion	14.6	2.0	78.4	3.8	1.2

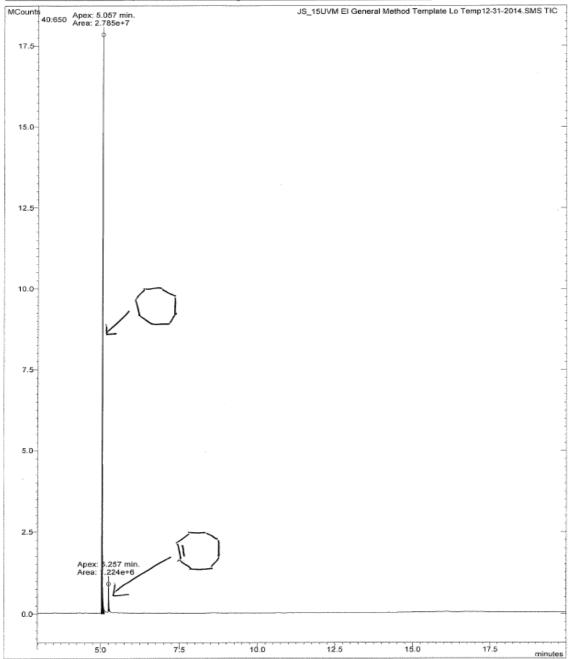

GC spectrum


MS Data Review Active Chromatogram Plot - 1/6/2015 8:05 AM


$Cp*Co(CO)I_2 + AB + cis-cyclooctene$

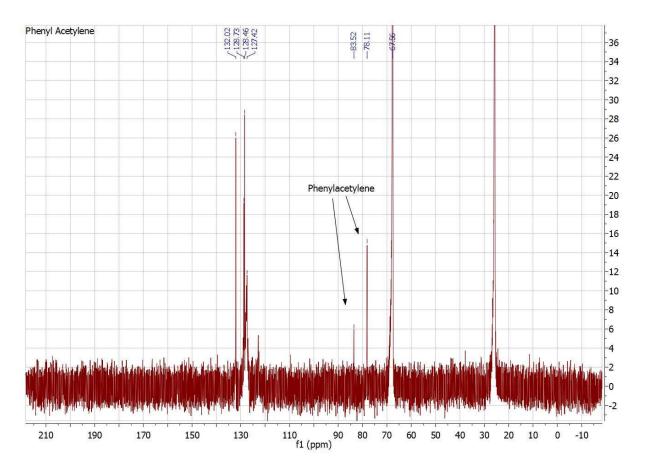
¹³C{¹H} NMR spectrum – initial, THF

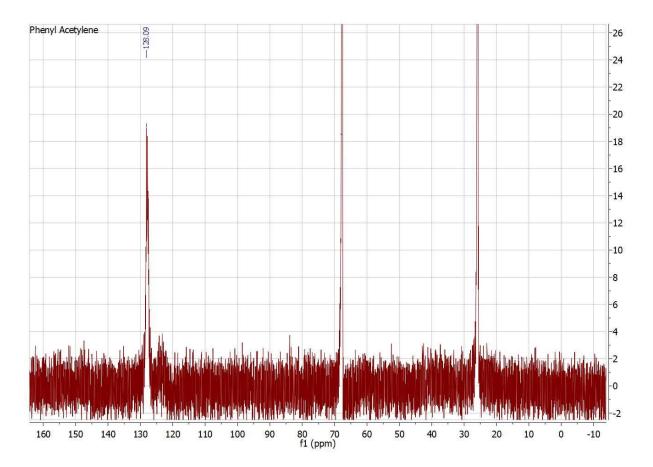
$^{13}C\{^{1}H\}$ NMR spectrum – final, THF

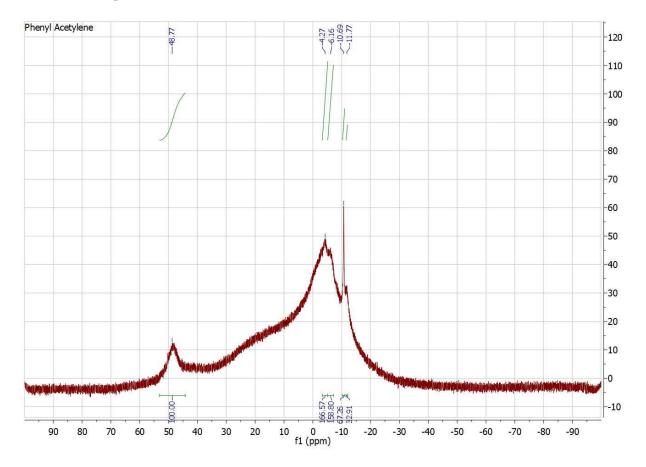


$^{11}B\{^1H\}$ NMR spectrum – final, THF, borosilicate NMR tube

δ (ppm)	48.4	37.0	30.9	27.3	-10.8	-5.0
Product	Hydroborylated species	Polyaminoborane	Borazine	Polyborazylene	Borazane	Unknown
% Conversion	15.7	9.9	14.5	15.4	14.3	30.2

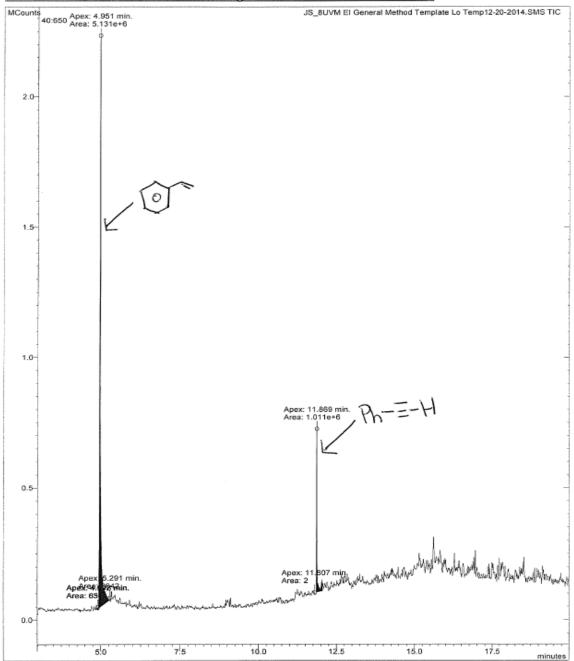

GC spectrum


MS Data Review Active Chromatogram Plot - 1/6/2015 8:03 AM


$Cp*Co(CO)I_2 + AB + Phenylacetylene$

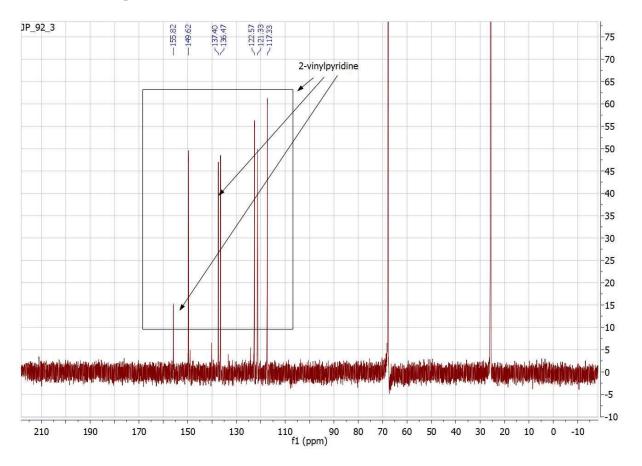
¹³C{¹H} NMR spectrum – final, THF

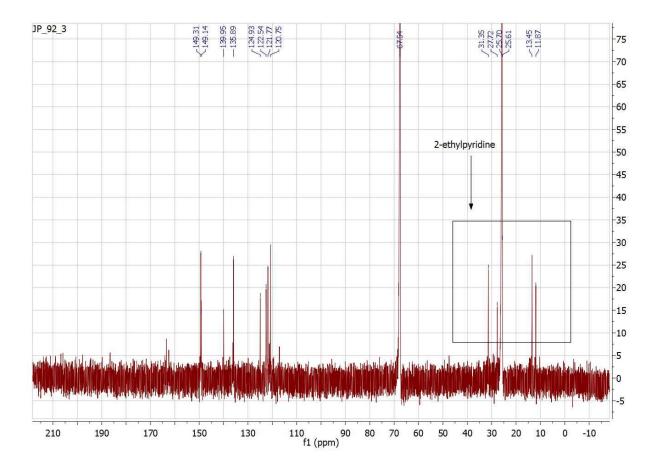
¹³C{¹H} NMR spectrum – final, THF

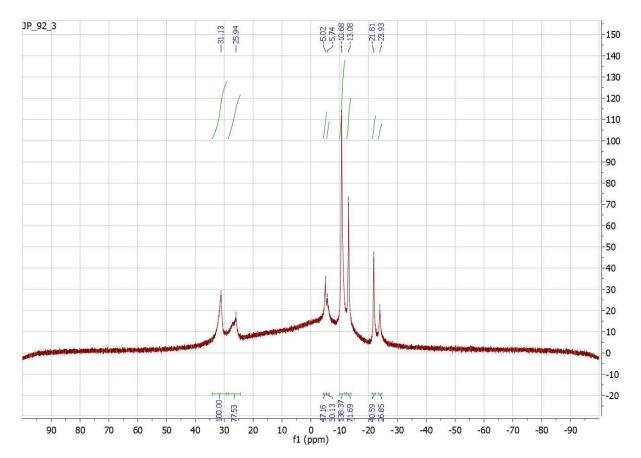


$^{11}B\{^{1}H\}$ NMR spectrum – final, THF, borosilicate NMR tube

δ (ppm)	48.8	-10.7	-11.8	-4.3, -6.2
Product	Hydroborylated	Borazane	Cyclodiborazane	Unknown
	Species			
% Conversion	19.0	31.7	30.2	19.1

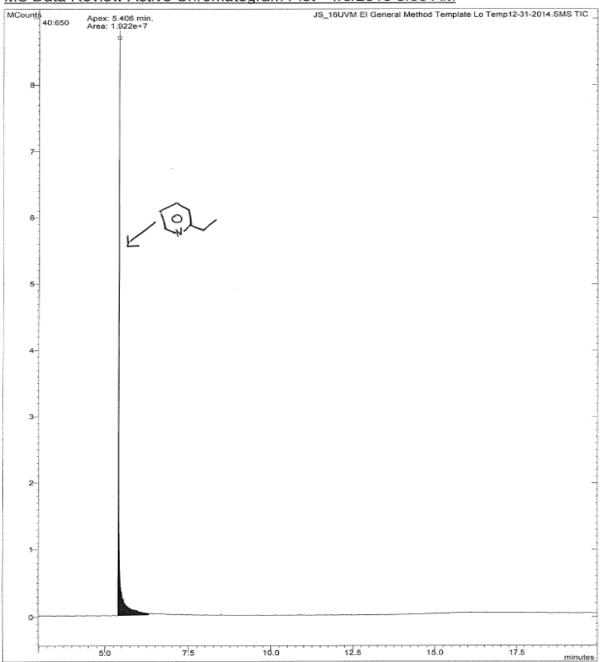

GC spectrum


MS Data Review Active Chromatogram Plot - 1/6/2015 8:05 AM


$Cp*Co(CO)I_2 + AB + 2$ -vinylpyridine

¹³C{¹H} NMR spectrum – initial, THF

¹³C{¹H} NMR spectrum – final, THF



¹¹B{¹H} NMR spectrum – final, THF, borosilicate NMR tube

δ (ppm)	31.1	26.0	-5.0, -10.7, -24.0	-21.8	-5.7, -13.1
Product	Borazine	Polyborazylene	B-(cyclodiborazanyl)aminoborohydride	NH ₃ BH ₃	Unknown
%	19.5	15.1	41.6	4.0	19.8
Conversion					

GC spectrum

MS Data Review Active Chromatogram Plot - 1/6/2015 8:03 AM

- 1. S. A. Frith and J. L. Spencer, *Inorg. Syn.*, 1990, **28**.
- 2. E. W. Powell and M. J. Mays, J. Organomet. Chem., 1974, 66, 137-147.
- 3. A. Staubitz, A. P. M. Robertson and I. Manners, *Chem. Rev.*, 2010, **110**, 4079-4124.
- 4. W. J. Shaw, J. C. Linehan, N. K. Szymczak, D. J. Heldebrant, C. Yonker, D. M. Camaioni, R. T. Baker and T. Autrey, *Angew. Chem. Int. Ed.*, 2008, **47**, 7493-7496.
- 5. A. Staubitz, A. P. M. Robertson, M. E. Sloan and I. Manners, *Chem. Rev.*, 2010, **110**, 4023-4078.
- 6. E. A. Bielinski, P. O. Lagaditis, Y. Zhang, B. Q. Mercado, C. Wurtele, W. H. Bernskoetter, N. Hazari and S. Schneider, *J. Am. Chem. Soc.*, 2014, **136**, 10234-10237.