Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Remarkable enhancement in Am³⁺/Eu³⁺selectivity by an ionic liquid based solvent containing bis-1,2,4-triazinyl pyridine derivatives: DFT validation of experimental results

A. Bhattacharyya^{1,*}, S.A. Ansari¹, T.Gadly², S.K. Ghosh², M. Mohapatra¹ and P.K. Mohapatra^{1,*}

1. Radiochemistry Division; 2. Bioorganic Division,

Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

Supporting Information

Distribution Studies

Figure S1: Effect of aqueous phase acidity on the extraction of Am^{3+} and Eu^{3+} by 0.01 M MeBTP in different $C_nmim.NTf_2$

Figure S2: Effect of aqueous phase acidity on the selectivity of Am^{3+} over Eu^{3+} by 0.01 M MeBTP in different $C_nmim.NTf_2$

Figure S3: Effect of aqueous phase acidity on the extraction of Am^{3+} and Eu^{3+} by 0.01 M EtBTP in different $C_nmim.NTf_2$

Figure S4: Effect of aqueous phase acidity on the selectivity of Am^{3+} over Eu^{3+} by 0.01 M EtBTP in different $C_nmim.NTf_2$

Figure S5: Effect of aqueous phase acidity on the extraction of Am^{3+} and Eu^{3+} by 0.01 M *n*-PrBTP in different $C_nmim.NTf_2$

Figure S6: Effect of aqueous phase acidity on the selectivity of Am^{3+} over Eu^{3+} by 0.01 M *n*-PrBTP in different $C_nmim.NTf_2$

Figure S7: Effect of MeBTP concentration on the Am^{3+} and Eu^{3+} extraction; Org. phase: 0.004-0.02 M MeBTP in C₄mim.NTf₂; Aq. Phase: 0.1 M HNO₃

Figure S8: Effect of EtBTP concentration on the Am^{3+} and Eu^{3+} extraction; Org. phase: 0.004-0.02 M EtBTP in C₄mim.NTf₂; Aq. Phase: 0.1 M HNO₃

Figure S9: Effect of nPrBTP concentration on the Am^{3+} and Eu^{3+} extraction; Org. phase: 0.004-0.02 M nPrBTP in C₄mim.NTf₂; Aq. Phase: 0.1 M HNO₃

Luminescence Studies

Figure S10: Decay of Eu³⁺ complexes in the organic extract ($\lambda_{ex} = 327$ nm (for Eu-MeBTP), 359 nm (for Eu-EtBTP) and 358 nm (for Eu-nPrBTP) and $\lambda_{em} = 616$ nm): Org. Phase: 0.01 M RBTP + 1 M 2-bromooctanoic acid in *n*-dodecane; Aq. Phase : 0.1 M HNO₃

Figure S11: Decay of Eu³⁺ complexes in the organic extract ($\lambda_{ex} = 247$ nm and $\lambda_{em} = 616$ nm): Org. Phase: 0.01 M RBTP in C₄mim.NTf₂; Aq. Phase : 0.1 M HNO₃

Table S12: Two center Mayer's bond orders in the 'M-N' bonds in different Am^{3+} and Eu^{3+} complexes of MeBTP (L: Me-BTP; BOA: 2-bromo octanoic acid)

M ³⁺	M(L)(BOA) ₃	$[M(L)_2(NO_3)_2]^+$	$[M(L)_3]^{3+}$
Am ³⁺	$Am-N_c = 0.297$	$Am-N_c = 0.311(2)$	$Am-N_c = 0.359(5)$
	$Am-N_1 = 0.28(4)$	$Am-N_1 = 0.30(1)$	$Am-N_1 = 0.346(9)$
Eu ³⁺	$Eu-N_c = 0.213$	$Eu-N_c = 0.253(3)$	$Eu-N_c = 0.305(2)$
	$Eu-N_1 = 0.211(6)$	$Eu-N_1 = 0.253(4)$	$Eu-N_1 = 0.299(6)$