Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

## **Supporting Information for**

Ring-Opening Polymerization of *rac*-Lactide and α-Methyltrimethylene
Carbonate Catalyzed by Magnesium and Zinc Complexes Derived from
Binaphthyl-based Iminophenolate Ligands

Miao Huang, Chen Pan and Haiyan Ma\*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

\* To whom correspondence should be addressed. Tel./Fax: +86 21 64253519. E-mail:

haiyanma@ecust.edu.cn.

## **Contents:**

- Table S1. Chemical shifts of Ar-NMe<sub>2</sub> resonances in the <sup>1</sup>H NMR spectra of complexes 4a-6a, 4b and corresponding proligands.
- **Table S2.** Crystallographic data for **4a**, **4b** and **5b**'.

- **Figure S1.** ORTEP diagram of the molecular structure of  $[(L^5)Zn (5b')]$ .
- **Figure S2.** A) <sup>1</sup>H NMR spectrum of magnesium complex **4a** in C<sub>6</sub>D<sub>6</sub>, one tiny drop of THF was added; B) <sup>1</sup>H NMR spectrum of complex **4a** in C<sub>6</sub>D<sub>6</sub>; C) <sup>1</sup>H NMR spectrum of free ligand **L**<sup>4</sup>H in C<sub>6</sub>D<sub>6</sub> (400 MHz).
- **Figure S3.** A) <sup>1</sup>H NMR spectrum of zinc complex **4b** in C<sub>6</sub>D<sub>6</sub>, one tiny drop of THF was added; B) <sup>1</sup>H NMR spectrum of complex **4b** in C<sub>6</sub>D<sub>6</sub>; C) <sup>1</sup>H NMR spectrum of free ligand L<sup>4</sup>H in C<sub>6</sub>D<sub>6</sub> (400 MHz).
- Figure S4. The variable temperature <sup>1</sup>H NMR spectra of complex 4a.
- **Figure S5.** The variable temperature <sup>1</sup>H NMR spectra of complex **4a** at -60 °C and -30 °C.
- Figure S6. The variable temperature <sup>1</sup>H NMR spectra of complex 4a with 2 equiv. of THF.
- **Figure S7.** The variable temperature <sup>1</sup>H NMR spectra of complex **4a** with 2.0 equiv. of THF at –45 °C and 30 °C.
- **Figure S8.** A) <sup>1</sup>H NMR spectrum of free ligand L<sup>4</sup>H; B) <sup>1</sup>H NMR spectrum of complex **4a**; C) <sup>1</sup>H NMR spectrum of the reaction mixture between complex **4a** and one equiv. of 2-propanol.
- **Figure S9.** <sup>1</sup>H NMR spectrum of the reaction mixture between complex **4a** and one equiv. of 2-propanol.
- **Figure S10.** Kinetics of *rac*-LA polymerization initiated by complexes **4a-6a**/<sup>i</sup>PrOH in toluene.
- **Figure S11.** Kinetics of the ROP of *rac*-LA initiator by [4a]/[iPrOH] in toluene.
- **Figure S12.** Plot of  $k_{app}$  versus the concentration of **4a** for rac-LA polymerization initiated by **4a**/2-propanol.

- **Figure S13.** A) <sup>1</sup>H NMR spectrum of *rac*-lactide oligomer obtained by complex **4a**/ <sup>i</sup>PrOH system; B) <sup>1</sup>H NMR spectrum of complex **4a**; C) <sup>1</sup>H NMR spectrum of free ligand **L**<sup>4</sup>H.
- **Figure S14.** <sup>1</sup>H NMR spectrum of *rac*-lactide oligomer obtained by complex **4a**/<sup>i</sup>PrOH system.
- **Figure S15.** <sup>1</sup>H NMR spectrum of polymer sample obtained from the **4a**-isopropanol system.
- **Figure S16**. ESI-TOF mass spectrum of the rac-LA oligomer obtained with **4a** ([rac-LA]<sub>0</sub>: [ $^{i}$ PrOH]<sub>0</sub> = 20:1:1, in THF).
- **Figure S17**. Homonuclear decoupled <sup>1</sup>H NMR spectrum of PLA produced from *rac*-lactide using **4b** as initiator.
- **Figure S18.** Details of the carbonyl region of the  $^{13}C\{^{1}H\}$  NMR spectra of poly( $\alpha$ -MeTMC) obtained by **4a**, **5a**, **6a**, **4b**.
- **Figure S19**. The DSC curves of poly( $\alpha$ -MeTMC) produced from  $\alpha$ -MeTMC using **4b** as initiator.

**Table S1.** Chemical shifts of Ar-NMe<sub>2</sub> resonances in the <sup>1</sup>H NMR spectra of complexes **4a-6a**, **4b** and corresponding proligands <sup>a</sup>

|         | $Ar-N(CH_3)_2$ |                        |                  | Ar- $N(CH_3)_2$ |
|---------|----------------|------------------------|------------------|-----------------|
| Complex | $C_6D_6$       | $C_6D_6$ with THF $^b$ | Ligand           | $C_6D_6$        |
| 4a      | 2.26 (s)       | 2.16 (s)               | $L^4H$           | 2.21            |
| 5a      | 2.25 (s)       | 2.20 (s)               | L <sup>5</sup> H | 2.20            |

| 6a        | 2.25 (s) | 2.23 (s) | L <sup>6</sup> H | 2.22 |
|-----------|----------|----------|------------------|------|
| <b>4b</b> | 1.98 (s) | 2.03 (s) | $L^4H$           | 2.21 |

<sup>&</sup>lt;sup>a</sup>: In ppm,  $C_6D_6$ , 400 MHz, 25 °C; <sup>b</sup>: One tiny drop of THF was added to the solution of metal complex in  $C_6D_6$ .

Table S2. Crystallographic data for 4a, 4b and 5b'

|                   | 4a                                                                | 4b                       | 5b'                     |
|-------------------|-------------------------------------------------------------------|--------------------------|-------------------------|
| Empirical formula | C <sub>53</sub> H <sub>61</sub> MgN <sub>3</sub> OSi <sub>2</sub> | $C_{53}H_{61}N_3OSi_2Zn$ | $C_{105}H_{86}N_4O_2Zn$ |
| Formula weight    | 836.54                                                            | 877.60                   | 1501.15                 |
| Temp (K)          | 293(2)                                                            | 293(2)                   | 140(2)                  |
| Crystal size (mm) | 0.213 x 0.147 x 0.123                                             | 0.267 x 0.211 x 0.147    | 0.16 x 0.12 x 0.10      |
| Crystal system    | Monoclinic                                                        | Triclinic                | Triclinic               |

| Space group                                       | P2(1)/n                  | P-1                                  | P-1                                  |
|---------------------------------------------------|--------------------------|--------------------------------------|--------------------------------------|
| a (Å)                                             | 13.584(9)                | 9.1425(8)                            | 14.188(2)                            |
| b (Å)                                             | 14.016(9)                | 14.6284(12)                          | 14.372(2)                            |
| c (Å)                                             | 26.244(19)               | 18.6227(16)                          | 24.466(5)                            |
| α (°)                                             | 90                       | 83.526(2)                            | 103.998(5)                           |
| β (°)                                             | 99.684(12)               | 88.281(2)                            | 95.315(5)                            |
| γ (°)                                             | 90                       | 87.762(2)                            | 112.577(3)                           |
| Volume (Å <sup>3</sup> )                          | 4925(6)                  | 2472.0(4)                            | 4373.0(14)                           |
| Z                                                 | 4                        | 2                                    | 2                                    |
| Density <sub>cal</sub> (mg/m <sup>3</sup> )       | 1.128                    | 1.179                                | 1.140                                |
| Abs coeff (mm <sup>-1</sup> )                     | 0.124                    | 0.584                                | 0.332                                |
| F(000)                                            | 1792                     | 932                                  | 1580                                 |
| $\theta$ range (°)                                | 1.57 to 25.50            | 1.68 to 26.00                        | 0.88 to 26.00                        |
| Data collected (hkl)                              | −9 to 16, −15 to 16, −28 | $\pm 11, -18 \text{ to } 13, \pm 22$ | $\pm 17, \pm 17, -24 \text{ to } 30$ |
|                                                   | to 31                    |                                      |                                      |
| Reflns collected/unique                           | 26959 / 9012             | 15166 / 9707                         | 31704 / 17112                        |
| R (int)                                           | 0.2455                   | 0.0295                               | 0.0748                               |
| Max. and min. transmn                             | 1.00000 and 0.23415      | 1.00000 and 0.14173                  | 0.9675 and 0.9488                    |
| Data/restrains/para                               | 9012 / 0 / 554           | 9707 / 0 / 553                       | 17112 / 618 / 1016                   |
| Goodness-of-fit on $F^2$                          | 0.826                    | 1.010                                | 0.977                                |
| Final $R_1$ , $wR_2$ [I > 2 $\sigma$ (I)]         | 0.0774, 0.1136           | 0.0530, 0.1352                       | 0.0724, 0.1861                       |
| $R_1$ , $wR_2$ (all data)                         | 0.3055, 0.1785           | 0.0791, 0.1534                       | 0.1262, 0.2214                       |
| $\Delta \rho_{max,  min} / e   \mathring{A}^{-3}$ | 0.200 and -0.234         | 0.522 and -0.309                     | 0.529 and -0.497                     |



**Figure S1**. ORTEP diagram of the molecular structure of [(L<sup>5</sup>)Zn (**5b'**). Thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angle (°): Zn1–O2 1.885(3), Zn1–O1 1.923(3), Zn1–N1 2.023(3), Zn1–N3 2.062(4), O1–Zn1–N1 94.0(14), O1–Zn1–N3 119.0(14), N1–Zn1–N3 104.8(14), O1–Zn1–O2 125.9(13), N1–Zn1–O2 117.8(13), N3–Zn1–O2 95.1(14).



**Figure S2.** A)  ${}^{1}$ H NMR spectrum of magnesium complex **4a** in  $C_6D_6$ , one tiny drop of THF was added; B)  ${}^{1}$ H NMR spectrum of complex **4a** in  $C_6D_6$ ; C)  ${}^{1}$ H NMR spectrum of free ligand  $L^{4}$ H in  $C_6D_6$  (400 MHz).



**Figure S3.** A) <sup>1</sup>H NMR spectrum of zinc complex **4b** in  $C_6D_6$ , one tiny drop of THF was added; B) <sup>1</sup>H NMR spectrum of complex **4b** in  $C_6D_6$ ; C) <sup>1</sup>H NMR spectrum of free ligand  $L^4H$  in  $C_6D_6$  (400 MHz).



**Figure S4.** The variable temperature  ${}^{1}$ H NMR spectra of complex **4a** (toluene- $d_8$ , 400 MHz; partial signals are shown).



**Figure S5.** The variable temperature  ${}^{1}$ H NMR spectra of complex **4a** at -60  ${}^{\circ}$ C and -30  ${}^{\circ}$ C (toluene- $d_{8}$ , 400 MHz; partial signals are shown).



**Figure S6.** The variable temperature  ${}^{1}$ H NMR spectra of complex **4a** with 2 equiv. of THF (toluene- $d_8$ , 400 MHz; partial signals are shown).



**Figure S7.** The variable temperature <sup>1</sup>H NMR spectra of complex **4a** with 2 equiv of THF at -45 °C and 30 °C (toluene- $d_8$ , 400 MHz; partial signals are shown).



**Figure S8**. A) <sup>1</sup>H NMR spectrum of free ligand  $L^4H$  in  $C_6D_6$ ; B) <sup>1</sup>H NMR spectrum of complex **4a** in  $C_6D_6$ ; C) <sup>1</sup>H NMR spectrum of the reaction mixture between complex **4a** and one equiv. of 2-propanol ( $C_6D_6$ , 400 MHz, \*, HN(SiMe<sub>3</sub>)<sub>2</sub>).



**Figure S9**. <sup>1</sup>H NMR spectrum of the reaction mixture between complex **4a** and one equiv. of 2-propanol ( $C_6D_6$ , 400 MHz; \*, HN(SiMe<sub>3</sub>)<sub>2</sub>).



**Figure S10**. Kinetics of *rac*-LA polymerization initiated by complexes **4a-6a**/<sup>*i*</sup>PrOH in toluene with [*rac*-LA]<sub>0</sub> = 1 mol/L, 25 °C. □: [*rac*-LA]<sub>0</sub>/[**4a**]<sub>0</sub>/[<sup>*i*</sup>PrOH]<sub>0</sub> = 200/1/1,  $k_{app}$  = 0.018 min<sup>-1</sup>; •: [*rac*-LA]<sub>0</sub>/[**5a**]<sub>0</sub>/[<sup>*i*</sup>PrOH]<sub>0</sub> = 200/1/1,  $k_{app}$  = 0.013 min<sup>-1</sup>; ■:[*rac*-LA]<sub>0</sub>/[**6a**]<sub>0</sub>/[<sup>*i*</sup>PrOH]<sub>0</sub> = 200/1/1,  $k_{app}$  = 0.0093 min<sup>-1</sup>.



**Figure S11.** Kinetics of *rac*-LA polymerization initiated by [4a]/[ $^i$ PrOH] in toluene at 25 °C with [LA] = 1 mol·L<sup>-1</sup> ( $\square$ : [ $^i$ Crac-LA]<sub>0</sub>/[4a]/[ $^i$ PrOH] = 200/1/1,  $k_{app}$  = 0.0177 min<sup>-1</sup>;  $\triangle$ : [ $^i$ Crac-LA]<sub>0</sub>/[4a]/[ $^i$ PrOH] = 400/1/1,  $k_{app}$  = 0.00959 min<sup>-1</sup>;  $\bigcirc$ : [ $^i$ Crac-LA]<sub>0</sub>/[4a]/[ $^i$ PrOH] = 500/1/1,  $k_{app}$  = 0.0078 min<sup>-1</sup>).



**Figure S12.** Plot of  $k_{app}$  *versus* the concentration of **4a** for *rac*-LA polymerization at 25 °C in toluene by **4a**/2-propanol ([*rac*-LA] = 1 mol·L<sup>-1</sup>,  $k_p = 3.52$  L·mol<sup>-1</sup>·min<sup>-1</sup>).



**Figure S13.** A) <sup>1</sup>H NMR spectrum of active *rac*-lactide oligomer obtained by complex **4a**/ $^{i}$ PrOH system ([*rac*-LA]<sub>0</sub> : [Mg]<sub>0</sub> : [ $^{i}$ PrOH]<sub>0</sub> = 20:1:1, at 25 °C); B) <sup>1</sup>H NMR spectrum of complex **4a**; C) <sup>1</sup>H NMR spectrum of free ligand L<sup>4</sup>H (C<sub>6</sub>D<sub>6</sub>, 400 MHz).



**Figure S14.** <sup>1</sup>H NMR spectrum of active *rac*-lactide oligomer obtained by complex **4a**/ <sup>i</sup>PrOH system ( $C_6D_6$ , 400 MHz; [rac-LA] $_0$ : [Mg] $_0$ : [ $^i$ PrOH] $_0$  = 20:1:1, at 25 °C).



**Figure S15.** <sup>1</sup>H NMR spectrum of typical polymer sample obtained by **4a**/isopropanol system with  $[rac\text{-LA}]/[4a]/[^i\text{PrOH}] = 20:1:1$  at 25 °C in THF.



**Figure S16**. ESI-TOF mass spectrum of the *rac*-LA oligomer obtained with **4a** ([*rac*-LA]<sub>0</sub>:  $[^{i}PrOH]_{0} = 20:1:1$ , in THF; **B:** cyclic oligomers + K<sup>+</sup> + 2).



**Figure S17**. Homonuclear decoupled <sup>1</sup>H NMR spectrum of PLA produced from *rac*-lactide using **4b** as the initiator. ([rac-LA]<sub>0</sub> = 1 M, [**4b**] = [iPrOH] = 0.5 mM, 97% monomer conv., in THF, 25 °C,  $P_r$  = 0.83).



**Figure S18.** Details of the carbonyl region of the  $^{13}$ C{ $^{1}$ H} NMR spectra (100 MHz, CDCl<sub>3</sub>, 25 °C) of poly(α-MeTMC)s: **4a** (Table 3, Run 1) ( $X_{reg}$  = ca. 0.78), **5a** (Table 3, Run 2) ( $X_{reg}$  = ca. 0.83), **6a** (Table 3, Run 3) ( $X_{reg}$  = ca. 0.82), **4b** (Table 3, run 4) ( $X_{reg}$  = ca. 0.98).



**Figure S19**. The DSC curves of poly(α-MeTMC) produced from α-MeTMC using **4b** as the initiator ([α-MeTMC]<sub>0</sub> = 1 M, [**4b**] = 0.5 mM, 90% monomer conv., in toluene, 25 °C,  $T_g$ = 4.06 °C).