Reactions of Phenylacetylene with Nickel POCOP-Pincer Hydride Complexes Resulting in Different Outcomes from Their Palladium Analogues

Gleason L. O. Wilson, Medhanei Abraha, Jeanette A. Krause and Hairong Guan*

Department of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, Ohio 45221-0172, USA E-mail: <u>hairong.guan@uc.edu</u>

Table of Contents

Table S1 Summary of crystallographic data	S2
Figure S1 ORTEP drawing of 5b	S3
Table S2 Atomic coordinates and equivalent isotropic displacement parameters for 5b	S3
Table S3 Bond lengths and angles for 5b	S6
Table S4 Anisotropic displacement parameters for 5b	S 8
Table S5 Torsion angles for 5b	S9
Figure S2 ORTEP drawing of 6a	S11
Table S6 Atomic coordinates and equivalent isotropic displacement parameters for 6a	S11
Table S7 Bond lengths and angles for 6a	S13
Table S8 Anisotropic displacement parameters for 6a	S14
Table S9 Torsion angles for 6a	S15
Figure S3 ORTEP drawing of 7a	S16
Table S10 Atomic coordinates and equivalent isotropic displacement parameters for 7a	S16
Table S11 Bond lengths and angles for 7a	S18
Table S12 Anisotropic displacement parameters for 7a	S19
Table S13 Torsion angles for 7a	S20
Figure S4 ORTEP drawing of 7b	S21
Table S14 Atomic coordinates and equivalent isotropic displacement parameters for 7b	S21
Table S15 Bond lengths and angles for 7b	S23
Table S16 Anisotropic displacement parameters for 7b	S24
Table S17 Torsion angles for 7b	S25

	5b	6a	7a	7b
empirical formula	$C_{34}H_{46}O_2P_2Ni$	$C_{26}H_{38}O_2P_2Ni$	C ₂₆ H ₃₆ O ₂ P ₂ Ni	C ₃₄ H ₄₄ O ₂ P ₂ Ni
formula weight	607.36	503.21	501.20	605.34
temp, K	150(2)	150(2)	150(2)	150(2)
crystal system	Monoclinic	Monoclinic	Monoclinic	Tetragonal
space group	$P2_1/n$	$P2_1/m$	$P2_1/c$	$P4_{1}2_{1}2$
a, Å	13.0470(4)	7.8641(3)	18.9605(12)	14.3061(2)
b, Å	16.0405(5)	14.1716(5)	14.8022(9)	14.3061(2)
c, Å	14.9995(5)	11.9392(4)	9.4584(6)	15.3464(2)
α, deg	90	90	90	90
β, deg	99.331(2)	101.328(2)	95.672(3)	90
γ. deg	90	90	90	90
Volume, Å ³	3097.56(17)	1304.67(8)	2641.6(3)	3140.86(7)
Z	4	2	4	4
$d_{calc}, g/cm^3$	1.302	1.281	1.260	1.280
λ, Å	1.54178	1.54178	1.54178	1.54178
μ , mm ⁻¹	2.094	2.375	2.345	2.065
no. of data collected	25317	11066	15015	27280
no. of unique data	5510	2434	4036	2860
R _{int}	0.0918	0.0703	0.0949	0.0534
Goodness-of-fit on F ²	0.996	1.029	0.982	1.048
R1, wR2 (I > $2\sigma(I)$)	0.0561, 0.1337	0.0463, 0.1095	0.0599, 0.1453	0.0360, 0.090
R1, wR2 (all data)	0.0971, 0.1544	0.0685, 0.1211	0.0924, 0.1634	0.0408, 0.0940

 Table S1
 Summary of crystallographic data

Figure S1 ORTEP drawing of $[2,6-(^{c}Pe_{2}PO)_{2}C_{6}H_{3}]NiC(Ph)=CH_{2}$ (**5b**) at the 50 % probability level.

Table S2 Atomic coordinates $[x10^4]$ and equivalent isotropic displacement parameters $[Å^2x10^3]$ for **5b**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
Ni	6115(1)	2431(1)	4107(1)	33(1)
P(1)	5318(1)	2098(1)	5194(1)	34(1)
P(2)	6899(1)	3107(1)	3184(1)	36(1)
O(1)	5356(2)	2922(2)	5864(2)	42(1)
O(2)	7164(2)	4046(2)	3624(2)	48(1)
C(1)	6235(3)	3475(2)	4726(3)	35(1)
C(2)	5850(3)	3597(2)	5526(3)	38(1)
C(3)	5931(3)	4349(3)	5991(3)	45(1)
C(4)	6416(4)	5011(2)	5635(3)	46(1)
C(5)	6820(4)	4922(2)	4840(3)	47(1)
C(6)	6732(3)	4156(2)	4407(3)	40(1)
C(7)	5885(3)	1292(2)	5975(3)	41(1)
C(8)	5390(4)	1178(3)	6837(3)	44(1)
C(9)	6270(4)	845(3)	7538(3)	60(1)
C(10A)	7141(14)	1513(11)	7261(10)	55(4)
C(10B)	7306(8)	1022(5)	7242(6)	54(2)
C(11)	7032(4)	1462(4)	6336(4)	72(2)
C(12)	3934(3)	1881(2)	5005(3)	38(1)
C(13)	3618(3)	1073(2)	4469(3)	44(1)
C(14)	2525(4)	1248(3)	3941(4)	68(2)
C(15)	2236(4)	2137(3)	4171(4)	75(2)
C(16)	3283(3)	2567(3)	4471(3)	51(1)
C(17)	8166(3)	2812(3)	2927(3)	47(1)
C(18)	8941(4)	2536(5)	3783(4)	81(2)
C(19A)	9214(10)	1751(8)	3776(8)	64(3)

C(20A)	9177(14)	1606(10)	2775(16)	66(6)
C(19B)	9527(13)	1769(10)	3280(11)	63(4)
C(20B)	8759(14)	1343(12)	2587(15)	65(5)
C(21)	8098(4)	2064(3)	2273(3)	55(1)
C(22)	6136(3)	3365(2)	2091(3)	38(1)
C(23)	5110(4)	3811(3)	2169(3)	53(1)
C(24)	4816(4)	4257(4)	1283(4)	69(2)
C(25)	5778(4)	4359(3)	864(3)	55(1)
C(26)	6672(3)	3974(3)	1509(3)	46(1)
C(27)	6082(3)	1295(2)	3515(2)	32(1)
C(28)	6645(3)	723(3)	3920(3)	45(1)
C(29)	5479(3)	1194(2)	2619(3)	42(1)
C(30)	4524(4)	1589(3)	2336(3)	47(1)
C(31)	3945(4)	1461(3)	1480(4)	61(1)
C(32)	4336(5)	954(4)	876(4)	74(2)
C(33)	5282(5)	574(4)	1116(4)	74(2)
C(34)	5846(4)	683(3)	1979(3)	58(1)
H(3)	5661	4408	6539	54
H(4)	6472	5533	5939	56
H(5)	7151	5377	4597	56
H(7)	5836	750	5643	49
H(8A)	5130	1716	7034	53
H(8B)	4807	776	6730	53
H(9A)	6444	257	7430	73
H(9B)	6141	918	8165	73
H(9C)	6189	255	7608	73
H(9D)	6249	1106	8110	73
H(10A)	6997	2086	7453	66
H(10B)	7852	1353	7545	66
H(10C)	7687	498	7177	65
H(10D)	7741	1385	7686	65
H(11A)	7468	1004	6160	87
H(11B)	7253	1990	6085	87
H(11C)	7148	2050	6411	87
H(11D)	7458	1256	5920	87
H(12)	3706	1831	5608	45
H(13A)	4111	948	4051	53
H(13B)	3603	595	4884	53
H(14A)	2525	1193	3284	81
H(14B)	2018	846	4118	81
H(15A)	1815	2138	4663	90
H(15B)	1840	2418	3636	90
H(16A)	3208	3056	4857	61
H(16B)	3596	2748	3944	61
H(17)	8469	3298	2644	56
H(18A)	9573	2886	3833	98
H(18B)	8618	2640	4326	98

$\Pi(1\delta C)$	0572	2550	4233	98
H(18D)	9415	2973	4013	98
H(19A)	8717	1387	4026	77
H(19B)	9922	1661	4116	77
H(20A)	9160	1002	2639	79
H(20B)	9792	1854	2568	79
H(19C)	10091	2008	2991	76
H(19D)	9838	1360	3739	76
H(20C)	9090	1101	2097	78
H(20D)	8370	904	2855	78
H(21A)	8136	2234	1645	65
H(21B)	7472	1718	2288	65
H(21C)	8280	2254	1713	65
H(21D)	7389	1880	2152	65
H(22A)	5971	2837	1742	46
H(23A)	4568	3403	2264	64
H(23B)	5208	4211	2678	64
H(24A)	4291	3930	877	83
H(24B)	4517	4809	1382	83
H(25A)	5914	4957	771	66
H(25B)	5693	4073	272	66
H(26A)	7067	4407	1890	55
H(26B)	7150	3672	1173	55
H(28A)	6687	197	3636	54
H(28B)	7025	819	4506	54
H(30)	4261	1957	2741	56
H(31)	3288	1722	1316	73
H(32)	3948	866	290	89
H(33)	5555	234	691	89
H(34)	6493	406	2139	70

Table S3	Bond lengths	[Å] and	angles	[°] for	5b .

Ni-C(1)	1.909(4)	Ni-C(27)	2.023(4)
Ni-P(1)	2.1393(11)	Ni-P(2)	2.1446(11)
P(1)-O(1)	1.656(3)	P(1)-C(12)	1.815(4)
P(1)-C(7)	1.818(4)	P(2)-O(2)	1.659(3)
P(2)-C(17)	1.819(4)	P(2)-C(22)	1.823(4)
O(1)-C(2)	1.396(5)	O(2)-C(6)	1.394(5)
C(1)-C(2)	1.388(6)	C(1)-C(6)	1.394(5)
C(2)-C(3)	1.389(5)	C(3)-C(4)	1.388(6)
C(4)-C(5)	1.388(6)	C(5)-C(6)	1.385(6)
C(7)-C(11)	1.530(6)	C(7)-C(8)	1.547(5)
C(8)-C(9)	1.522(6)	C(9)-C(10B)	1.516(11)
C(9)-C(10A)	1.662(18)	C(10A)-C(11)	1.373(16)
C(10B)-C(11)	1.521(10)	C(12)-C(16)	1.534(5)
C(12)-C(13)	1.546(5)	C(13)-C(14)	1.540(6)
C(14)-C(15)	1.529(7)	C(15)-C(16)	1.531(7)
C(17)-C(21)	1.543(6)	C(17)-C(18)	1.564(7)
C(18)-C(19A)	1.309(13)	C(18)-C(19B)	1.690(17)
C(19A)-C(20A)	1.51(2)	C(20A)-C(21)	1.66(2)
C(19B)-C(20B)	1.49(2)	C(20B)-C(21)	1.47(2)
C(22)-C(23)	1.539(6)	C(22)-C(26)	1.550(5)
C(23)-C(24)	1.504(6)	C(24)-C(25)	1.500(7)
C(25)-C(26)	1.520(6)	C(27)-C(28)	1.267(6)
C(27)-C(29)	1.453(6)	C(29)-C(30)	1.401(6)
C(29)-C(34)	1.404(6)	C(30)-C(31)	1.395(6)
C(31)-C(32)	1.376(8)	C(32)-C(33)	1.372(8)
C(33)-C(34)	1.392(7)		
C(1)-Ni-C(27)	175.77(16)	C(1)-Ni-P(1)	81.95(12)
C(27)-Ni- $P(1)$	97.52(10)	C(1)-Ni-P(2)	81.98(12)
C(27)-Ni-P(2)	98.66(10)	P(1)-Ni- $P(2)$	163.80(5)
O(1)-P(1)-C(12)	100.29(17)	O(1)-P(1)-C(7)	102.01(18)
C(12)-P(1)-C(7)	104.80(19)	O(1)-P(1)-Ni	106.99(10)
C(12)-P(1)-Ni	121.52(14)	C(7)-P(1)-Ni	118.08(14)
O(2)-P(2)-C(17)	100.52(19)	O(2)-P(2)-C(22)	101.53(17)
C(17)-P(2)-C(22)	104.58(19)	O(2)-P(2)-Ni	106.99(11)
C(17)-P(2)-Ni	123.35(14)	C(22)-P(2)-Ni	116.60(13)
C(2)-O(1)-P(1)	111.7(2)	C(6)-O(2)-P(2)	111.3(2)
C(2)-C(1)-C(6)	116.1(4)	C(2)-C(1)-Ni	122.1(3)
C(6)-C(1)-Ni	121.8(3)	C(1)-C(2)-C(3)	123.2(4)
C(1)-C(2)-O(1)	117.3(3)	C(3)-C(2)-O(1)	119.5(4)
C(4)-C(3)-C(2)	118.3(4)	C(5)-C(4)-C(3)	120.8(4)
C(6)-C(5)-C(4)	118.7(4)	C(5)-C(6)-C(1)	122.9(4)
C(5)-C(6)-O(2)	119.5(4)	C(1)-C(6)-O(2)	117.6(3)
C(11)-C(7)-C(8)	104.0(4)	C(11)-C(7)-P(1)	112.0(3)
C(8)-C(7)-P(1)	116.2(3)	C(9)-C(8)-C(7)	104.4(4)

C(10B)-C(9)-C(8)	109.9(5)	C(8)-C(9)-C(10A)	94.0(7)
C(11)-C(10A)-C(9)	104.5(10)	C(9)-C(10B)-C(11)	104.9(6)
C(10A)-C(11)-C(7)	107.7(8)	C(10B)-C(11)-C(7)	108.0(5)
C(16)-C(12)-C(13)	104.6(4)	C(16)-C(12)-P(1)	113.4(3)
C(13)-C(12)-P(1)	114.6(3)	C(14)-C(13)-C(12)	105.2(3)
C(15)-C(14)-C(13)	107.2(4)	C(14)-C(15)-C(16)	104.3(4)
C(15)-C(16)-C(12)	102.9(4)	C(21)-C(17)-C(18)	105.3(4)
C(21)-C(17)-P(2)	112.1(3)	C(18)-C(17)-P(2)	112.9(3)
C(19A)-C(18)-C(17)	114.0(7)	C(17)-C(18)-C(19B)	96.8(6)
C(18)-C(19A)-C(20A)	101.0(10)	C(19A)-C(20A)-C(21)	105.7(11)
C(20B)-C(19B)-C(18)	110.2(14)	C(21)-C(20B)-C(19B)	99.0(14)
C(20B)-C(21)-C(17)	115.9(9)	C(17)-C(21)-C(20A)	95.7(7)
C(23)-C(22)-C(26)	103.2(3)	C(23)-C(22)-P(2)	113.1(3)
C(26)-C(22)-P(2)	114.8(3)	C(24)-C(23)-C(22)	104.7(4)
C(25)-C(24)-C(23)	108.2(4)	C(24)-C(25)-C(26)	107.3(4)
C(25)-C(26)-C(22)	104.1(3)	C(28)-C(27)-C(29)	123.2(4)
C(28)-C(27)-Ni	118.2(3)	C(29)-C(27)-Ni	118.4(3)
C(30)-C(29)-C(34)	116.2(4)	C(30)-C(29)-C(27)	123.5(4)
C(34)-C(29)-C(27)	120.3(4)	C(31)-C(30)-C(29)	122.3(4)
C(32)-C(31)-C(30)	119.3(5)	C(33)-C(32)-C(31)	120.2(5)
C(32)-C(33)-C(34)	120.3(5)	C(33)-C(34)-C(29)	121.5(5)

Table S4 Anisotropic displacement parameters $[Å^2x10^3]$ for **5b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka^{*}b^{*}U_{12}]$

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni	37(1)	28(1)	34(1)	1(1)	9(1)	-1(1)
P(1)	40(1)	29(1)	36(1)	1(1)	12(1)	-1(1)
P(2)	38(1)	33(1)	38(1)	4(1)	11(1)	-2(1)
O(1)	56(2)	33(1)	41(2)	-5(1)	19(1)	-8(1)
O(2)	64(2)	37(2)	46(2)	0(1)	20(2)	-16(1)
C(1)	39(2)	30(2)	38(2)	3(2)	6(2)	0(2)
C(2)	38(2)	33(2)	43(2)	0(2)	3(2)	-2(2)
C(3)	54(3)	41(2)	41(2)	-5(2)	10(2)	-2(2)
C(4)	62(3)	29(2)	46(3)	-6(2)	0(2)	-4(2)
C(5)	57(3)	32(2)	51(3)	2(2)	9(2)	-8(2)
C(6)	47(3)	34(2)	38(2)	1(2)	7(2)	-3(2)
C(7)	43(2)	36(2)	45(2)	10(2)	13(2)	8(2)
C(8)	57(3)	40(2)	38(2)	4(2)	17(2)	-3(2)
C(9)	61(3)	79(4)	42(3)	9(2)	9(2)	-8(3)
C(10A)	51(10)	90(12)	22(7)	-2(9)	0(6)	-19(10)
C(10B)	51(5)	63(5)	47(5)	3(5)	1(4)	-6(5)
C(11)	41(3)	107(4)	68(4)	45(3)	6(3)	2(3)
C(12)	38(2)	32(2)	46(2)	4(2)	16(2)	0(2)
C(13)	49(3)	31(2)	55(3)	1(2)	18(2)	-6(2)
C(14)	44(3)	76(4)	83(4)	-12(3)	10(3)	-13(3)
C(15)	47(3)	64(3)	109(5)	23(3)	2(3)	2(3)
C(16)	47(3)	38(2)	69(3)	8(2)	12(2)	10(2)
C(17)	38(2)	57(3)	46(2)	16(2)	11(2)	2(2)
C(18)	41(3)	140(6)	64(4)	34(4)	7(3)	11(3)
C(19A)	59(7)	71(8)	60(8)	40(7)	3(6)	6(6)
C(20A)	63(17)	46(11)	96(18)	22(11)	36(14)	21(9)
C(19B)	53(9)	67(9)	68(11)	24(9)	2(8)	10(7)
C(20B)	65(13)	68(12)	63(9)	4(8)	13(9)	12(7)
C(21)	60(3)	46(2)	66(3)	12(2)	36(3)	8(2)
C(22)	39(2)	35(2)	42(2)	4(2)	8(2)	2(2)
C(23)	47(3)	54(3)	60(3)	18(2)	16(2)	11(2)
C(24)	47(3)	82(4)	78(4)	36(3)	10(3)	15(3)
C(25)	59(3)	50(3)	57(3)	18(2)	9(2)	6(2)
C(26)	45(3)	48(2)	46(3)	12(2)	14(2)	1(2)
C(27)	27(2)	50(2)	23(2)	4(2)	11(2)	-1(2)
C(28)	55(3)	40(2)	44(2)	-8(2)	21(2)	-7(2)
C(29)	44(2)	35(2)	49(3)	-2(2)	11(2)	-2(2)
C(30)	50(3)	39(2)	52(3)	2(2)	6(2)	-5(2)
C(31)	52(3)	62(3)	66(3)	6(3)	-2(3)	-7(2)
C(32)	77(4)	84(4)	56(3)	-13(3)	-9(3)	-10(3)
C(33)	66(4)	96(4)	58(3)	-36(3)	-1(3)	-2(3)
C(34)	58(3)	63(3)	53(3)	-16(2)	7(2)	-2(2)

Table S5 Torsion angles [°] for **5b**.

C(1)-Ni-P(1)-O(1)	-1.88(16)	C(27)-Ni-P(1)-O(1)	173.88(16)
P(2)-Ni-P(1)-O(1)	-9.4(2)	C(1)-Ni-P(1)-C(12)	112.11(19)
C(27)-Ni-P(1)-C(12)	-72.12(18)	P(2)-Ni-P(1)-C(12)	104.6(2)
C(1)-Ni-P(1)-C(7)	-116.1(2)	C(27)-Ni- $P(1)$ - $C(7)$	59.7(2)
P(2)-Ni-P(1)-C(7)	-123.5(2)	C(1)-Ni-P(2)-O(2)	3.66(17)
C(27)-Ni-P(2)-O(2)	-172.12(16)	P(1)-Ni-P(2)-O(2)	11.1(2)
C(1)-Ni-P(2)-C(17)	119.1(2)	C(27)-Ni- $P(2)$ - $C(17)$	-56.7(2)
P(1)-Ni-P(2)-C(17)	126.6(2)	C(1)-Ni-P(2)-C(22)	-109.09(19)
C(27)-Ni-P(2)-C(22)	75.13(18)	P(1)-Ni-P(2)-C(22)	-101.6(2)
C(12)-P(1)-O(1)-C(2)	-125.5(3)	C(7)-P(1)-O(1)-C(2)	126.8(3)
Ni-P(1)-O(1)-C(2)	2.1(3)	C(17)-P(2)-O(2)-C(6)	-135.2(3)
C(22)-P(2)-O(2)-C(6)	117.4(3)	Ni-P(2)-O(2)-C(6)	-5.3(3)
C(27)-Ni-C(1)-C(2)	-82(2)	P(1)-Ni-C(1)-C(2)	1.6(3)
P(2)-Ni-C(1)-C(2)	179.5(3)	C(27)-Ni- $C(1)$ - $C(6)$	97(2)
P(1)-Ni-C(1)-C(6)	-179.6(3)	P(2)-Ni-C(1)-C(6)	-1.7(3)
C(6)-C(1)-C(2)-C(3)	0.8(6)	Ni-C(1)-C(2)-C(3)	179.7(3)
C(6)-C(1)-C(2)-O(1)	-179.5(3)	Ni-C(1)-C(2)-O(1)	-0.6(5)
P(1)-O(1)-C(2)-C(1)	-1.2(5)	P(1)-O(1)-C(2)-C(3)	178.5(3)
C(1)-C(2)-C(3)-C(4)	0.4(7)	O(1)-C(2)-C(3)-C(4)	-179.3(4)
C(2)-C(3)-C(4)-C(5)	-0.7(7)	C(3)-C(4)-C(5)-C(6)	-0.1(7)
C(4)-C(5)-C(6)-C(1)	1.4(7)	C(4)-C(5)-C(6)-O(2)	-177.9(4)
C(2)-C(1)-C(6)-C(5)	-1.7(6)	Ni-C(1)-C(6)-C(5)	179.4(3)
C(2)-C(1)-C(6)-O(2)	177.5(4)	Ni-C(1)-C(6)-O(2)	-1.3(5)
P(2)-O(2)-C(6)-C(5)	-176.2(3)	P(2)-O(2)-C(6)-C(1)	4.5(5)
O(1)-P(1)-C(7)-C(11)	-66.2(4)	C(12)-P(1)-C(7)-C(11)	-170.4(4)
Ni-P(1)-C(7)-C(11)	50.7(4)	O(1)-P(1)-C(7)-C(8)	53.0(4)
C(12)-P(1)-C(7)-C(8)	-51.2(4)	Ni-P(1)-C(7)-C(8)	169.9(3)
C(11)-C(7)-C(8)-C(9)	-28.4(5)	P(1)-C(7)-C(8)-C(9)	-151.9(3)
C(7)-C(8)-C(9)-C(10B)	18.5(6)	C(7)-C(8)-C(9)-C(10A)	43.8(7)
C(10B)-C(9)-C(10A)-C(11)	76.1(16)	C(8)-C(9)-C(10A)-C(11)	-48.7(11)
C(8)-C(9)-C(10B)-C(11)	-0.8(8)	C(10A)-C(9)-C(10B)-C(11)	-61.4(13)
C(9)-C(10A)-C(11)-C(10B)	-62.5(15)	C(9)-C(10A)-C(11)-C(7)	33.4(13)
C(9)-C(10B)-C(11)-C(10A)	77.0(18)	C(9)-C(10B)-C(11)-C(7)	-17.7(8)
C(8)-C(7)-C(11)-C(10A)	-4.9(10)	P(1)-C(7)-C(11)-C(10A)	121.3(9)
C(8)-C(7)-C(11)-C(10B)	29.1(6)	P(1)-C(7)-C(11)-C(10B)	155.2(5)
O(1)-P(1)-C(12)-C(16)	66.0(3)	C(7)-P(1)-C(12)-C(16)	171.5(3)
Ni-P(1)-C(12)-C(16)	-51.4(3)	O(1)-P(1)-C(12)-C(13)	-174.0(3)
C(7)-P(1)-C(12)-C(13)	-68.6(3)	Ni-P(1)-C(12)-C(13)	68.6(3)
C(16)-C(12)-C(13)-C(14)	-24.0(4)	P(1)-C(12)-C(13)-C(14)	-148.8(3)
C(12)-C(13)-C(14)-C(15)	0.3(5)	C(13)-C(14)-C(15)-C(16)	23.5(6)
C(14)-C(15)-C(16)-C(12)	-38.3(5)	C(13)-C(12)-C(16)-C(15)	38.6(5)
P(1)-C(12)-C(16)-C(15)	164.2(3)	O(2)-P(2)-C(17)-C(21)	-164.4(3)
C(22)-P(2)-C(17)-C(21)	-59.4(3)	Ni-P(2)-C(17)-C(21)	77.0(3)
O(2)-P(2)-C(17)-C(18)	76.8(4)	C(22)-P(2)-C(17)-C(18)	-178.2(4)
Ni-P(2)-C(17)-C(18)	-41.7(5)	C(21)-C(17)-C(18)-C(19A)	-7.9(9)

P(2)-C(17)-C(18)-C(19A)	114.7(8)	C(21)-C(17)-C(18)-C(19B)	20.3(8)
P(2)-C(17)-C(18)-C(19B)	142.9(7)	C(17)-C(18)-C(19A)-C(20A)	31.9(13)
C(19B)-C(18)-C(19A)-C(20A)	-30.4(13)	C(18)-C(19A)-C(20A)-C(21)	-43.4(13)
C(19A)-C(18)-C(19B)-C(20B)	90(2)	C(17)-C(18)-C(19B)-C(20B)	-35.7(14)
C(18)-C(19B)-C(20B)-C(21)	34.2(16)	C(19B)-C(20B)-C(21)-C(17)	-20.5(16)
C(19B)-C(20B)-C(21)-C(20A)	19(3)	C(18)-C(17)-C(21)-C(20B)	-1.8(10)
P(2)-C(17)-C(21)-C(20B)	-125.0(9)	C(18)-C(17)-C(21)-C(20A)	-17.8(8)
P(2)-C(17)-C(21)-C(20A)	-141.0(7)	C(19A)-C(20A)-C(21)-C(20B)	-108(4)
C(19A)-C(20A)-C(21)-C(17)	36.8(11)	O(2)-P(2)-C(22)-C(23)	-63.5(3)
C(17)-P(2)-C(22)-C(23)	-167.7(3)	Ni-P(2)-C(22)-C(23)	52.4(3)
O(2)-P(2)-C(22)-C(26)	54.6(3)	C(17)-P(2)-C(22)-C(26)	-49.7(3)
Ni-P(2)-C(22)-C(26)	170.4(2)	C(26)-C(22)-C(23)-C(24)	33.9(5)
P(2)-C(22)-C(23)-C(24)	158.5(4)	C(22)-C(23)-C(24)-C(25)	-21.1(6)
C(23)-C(24)-C(25)-C(26)	-0.4(6)	C(24)-C(25)-C(26)-C(22)	21.6(5)
C(23)-C(22)-C(26)-C(25)	-34.0(5)	P(2)-C(22)-C(26)-C(25)	-157.5(3)
C(1)-Ni-C(27)-C(28)	12(2)	P(1)-Ni-C(27)-C(28)	-70.5(3)
P(2)-Ni-C(27)-C(28)	110.4(3)	C(1)-Ni-C(27)-C(29)	-163(2)
P(1)-Ni-C(27)-C(29)	114.3(3)	P(2)-Ni-C(27)-C(29)	-64.8(3)
C(28)-C(27)-C(29)-C(30)	147.5(4)	Ni-C(27)-C(29)-C(30)	-37.5(5)
C(28)-C(27)-C(29)-C(34)	-32.9(6)	Ni-C(27)-C(29)-C(34)	142.2(4)
C(34)-C(29)-C(30)-C(31)	2.4(6)	C(27)-C(29)-C(30)-C(31)	-178.0(4)
C(29)-C(30)-C(31)-C(32)	-2.4(7)	C(30)-C(31)-C(32)-C(33)	0.4(9)
C(31)-C(32)-C(33)-C(34)	1.4(9)	C(32)-C(33)-C(34)-C(29)	-1.4(9)
C(30)-C(29)-C(34)-C(33)	-0.5(7)	C(27)-C(29)-C(34)-C(33)	179.8(5)

Figure S2 ORTEP drawing of (E)-[2,6-(ⁱPr₂PO)₂C₆H₃]NiCH=CHPh (**6a**) at the 50 % probability level.

Table S6 Atomic coordinates $[x10^4]$ and equivalent isotropic displacement parameters $[Å^2x10^3]$ for **6a**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
Ni	2582(1)	7500	7498(1)	27(1)
P(1)	2822(1)	8987(1)	7344(1)	28(1)
O(1)	3701(3)	9180(1)	6204(2)	37(1)
C(1)	3685(5)	7500	6215(3)	28(1)
C(2)	4176(4)	8333(2)	5744(2)	34(1)
C(3)	5082(4)	8359(3)	4859(3)	39(1)
C(4)	5522(6)	7500	4429(4)	46(1)
C(7)	898(4)	9738(2)	7030(3)	39(1)
C(8)	-481(5)	9251(3)	6140(3)	58(1)
C(9)	223(4)	9969(2)	8115(3)	47(1)
C(10)	4386(4)	9567(2)	8471(3)	31(1)
C(11)	5988(4)	8947(2)	8784(3)	39(1)
C(12)	4858(4)	10569(2)	8151(3)	40(1)
C(27)	1484(6)	7500	8803(4)	30(1)
C(28)	2055(6)	7500	9880(4)	30(1)
C(29)	1119(5)	7500	10855(4)	28(1)
C(30)	-696(5)	7500	10673(4)	33(1)
C(31)	-1548(6)	7500	11585(4)	37(1)
C(32)	-617(6)	7500	12706(4)	39(1)
C(33)	1170(6)	7500	12897(4)	34(1)
C(34)	2030(5)	7500	11984(4)	30(1)
H(3)	5391	8941	4558	47
H(4)	6143	7500	3822	55
H(7)	1225	10343	6696	47

H(8A)	-1437	9690	5874	86
H(8B)	-921	8696	6482	86
H(8C)	30	9053	5492	86
H(9A)	-902	10286	7910	71
H(9B)	1049	10385	8604	71
H(9C)	90	9384	8527	71
H(10)	3845	9616	9160	37
H(11A)	6847	9262	9370	58
H(11B)	6484	8837	8103	58
H(11C)	5665	8341	9079	58
H(12A)	5679	10847	8790	60
H(12B)	3807	10956	7984	60
H(12C)	5391	10542	7475	60
H(27)	253	7500	8602	36
H(28)	3283	7500	10099	36
H(30)	-1352	7500	9914	39
H(31)	-2780	7500	11444	45
H(32)	-1205	7500	13329	47
H(33)	1818	7500	13657	40
H(34)	3261	7500	12131	35

1.903(4)	Ni-C(27)	1.924(4)
2.1270(8)	P(1)-O(1)	1.665(2)
1.827(3)	P(1)-C(10)	1.830(3)
1.401(4)	C(1)-C(2)	1.394(4)
1.387(4)	C(3)-C(4)	1.391(4)
1.526(5)	C(7)-C(9)	1.529(5)
1.522(4)	C(10)-C(12)	1.535(4)
1.276(6)	C(28)-C(29)	1.494(5)
1.397(6)	C(29)-C(30)	1.401(6)
1.386(6)	C(31)-C(32)	1.394(6)
1.379(6)	C(33)-C(34)	1.391(5)
179.55(18)	C(1)-Ni-P(1)	82.41(3)
97.57(3)	P(1)#1-Ni-P(1)	164.40(5)
101.35(14)	O(1)-P(1)-C(10)	101.56(12)
107.39(15)	O(1)-P(1)-Ni	106.95(8)
120.71(11)	C(10)-P(1)-Ni	116.08(10)
111.44(18)	C(2)#1- $C(1)$ - $C(2)$	115.7(4)
122.06(19)	C(3)-C(2)-C(1)	123.7(3)
119.5(3)	C(1)-C(2)-O(1)	116.8(3)
117.4(3)	C(3)-C(4)-C(3)#1	122.1(4)
111.7(3)	C(8)-C(7)-P(1)	109.0(2)
111.2(2)	C(11)-C(10)-C(12)	111.5(3)
109.0(2)	C(12)-C(10)-P(1)	113.1(2)
133.7(4)	C(27)-C(28)-C(29)	131.0(4)
117.6(4)	C(34)-C(29)-C(28)	121.0(4)
121.5(4)	C(31)-C(30)-C(29)	120.9(4)
120.7(4)	C(33)-C(32)-C(31)	119.0(4)
120.5(4)	C(33)-C(34)-C(29)	121.4(4)
	$\begin{array}{c} 1.903(4)\\ 2.1270(8)\\ 1.827(3)\\ 1.401(4)\\ 1.387(4)\\ 1.526(5)\\ 1.522(4)\\ 1.276(6)\\ 1.397(6)\\ 1.397(6)\\ 1.386(6)\\ 1.379(6)\\ \end{array}$ $\begin{array}{c} 179.55(18)\\ 97.57(3)\\ 101.35(14)\\ 107.39(15)\\ 120.71(11)\\ 111.44(18)\\ 122.06(19)\\ 119.5(3)\\ 117.4(3)\\ 111.7(3)\\ 111.2(2)\\ 109.0(2)\\ 133.7(4)\\ 117.6(4)\\ 121.5(4)\\ 120.7(4)\\ 120.5(4)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S7Bond lengths [Å] and angles [°] for 6a.

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z

Table S8 Anisotropic displacement parameters $[Å^2x10^3]$ for **6a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka^{*}b^{*}U_{12}]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Ni	33(1)	24(1)	23(1)	0	7(1)	0
P(1)	32(1)	26(1)	26(1)	2(1)	3(1)	-3(1)
O(1)	52(1)	33(1)	26(1)	2(1)	8(1)	-11(1)
C(1)	26(2)	38(2)	18(2)	Ó	0(2)	Ó
C(2)	30(2)	46(2)	24(2)	-2(1)	-1(1)	-7(1)
C(3)	34(2)	59(2)	24(2)	5(2)	4(1)	-12(2)
C(4)	30(2)	82(4)	28(2)	Ó	11(2)	Ó
C(7)	35(2)	29(2)	49(2)	10(2)	0(2)	-2(1)
C(8)	46(2)	47(2)	69(3)	10(2)	-15(2)	-4(2)
C(9)	37(2)	37(2)	69(2)	4(2)	13(2)	6(2)
C(10)	34(2)	31(2)	27(2)	1(1)	6(1)	-2(1)
C(11)	31(2)	43(2)	39(2)	0(2)	-3(1)	-2(2)
C(12)	44(2)	35(2)	39(2)	-2(2)	3(2)	-7(2)
C(27)	35(2)	20(2)	36(2)	Ó	9(2)	Ó
C(28)	35(2)	23(2)	36(2)	0	15(2)	0
C(29)	35(2)	18(2)	32(2)	0	8(2)	0
C(30)	31(2)	31(2)	34(2)	0	1(2)	0
C(31)	29(2)	33(2)	50(3)	0	9(2)	0
C(32)	40(3)	39(3)	45(3)	0	25(2)	0
C(33)	40(2)	36(2)	24(2)	0	5(2)	0
C(34)	29(2)	28(2)	33(2)	0	9(2)	0

Table S9Torsion angles [°] for 6a.

C(1)-Ni-P(1)-O(1)	2.56(15)	C(27)-Ni-P(1)-O(1)	-177.89(16)
P(1)#1-Ni-P(1)-O(1)	16.1(2)	C(1)-Ni-P(1)-C(7)	117.42(18)
C(27)-Ni-P(1)-C(7)	-63.03(19)	P(1)#1-Ni-P(1)-C(7)	130.9(2)
C(1)-Ni-P(1)-C(10)	-109.92(16)	C(27)-Ni-P(1)-C(10)	69.63(17)
P(1)#1-Ni-P(1)-C(10)	-96.4(2)	C(7)-P(1)-O(1)-C(2)	-132.8(2)
C(10)-P(1)-O(1)-C(2)	116.6(2)	Ni-P(1)-O(1)-C(2)	-5.5(2)
C(27)-Ni-C(1)-C(2)#1	87.4(4)	P(1)#1-Ni-C(1)-C(2)#1	-0.8(3)
P(1)-Ni-C(1)-C(2)#1	175.6(3)	C(27)-Ni-C(1)-C(2)	-87.4(4)
P(1)#1-Ni-C(1)-C(2)	-175.6(3)	P(1)-Ni-C(1)-C(2)	0.8(3)
C(2)#1- $C(1)$ - $C(2)$ - $C(3)$	0.5(6)	Ni-C(1)-C(2)-C(3)	175.6(3)
C(2)#1- $C(1)$ - $C(2)$ - $O(1)$	-179.9(2)	Ni-C(1)-C(2)-O(1)	-4.7(4)
P(1)-O(1)-C(2)-C(3)	-173.7(2)	P(1)-O(1)-C(2)-C(1)	6.6(4)
C(1)-C(2)-C(3)-C(4)	-0.2(5)	O(1)-C(2)-C(3)-C(4)	-179.9(3)
C(2)-C(3)-C(4)-C(3)#1	0.0(6)	O(1)-P(1)-C(7)-C(8)	77.1(3)
C(10)-P(1)-C(7)-C(8)	-176.8(2)	Ni-P(1)-C(7)-C(8)	-40.6(3)
O(1)-P(1)-C(7)-C(9)	-159.3(2)	C(10)-P(1)-C(7)-C(9)	-53.2(3)
Ni-P(1)-C(7)-C(9)	83.0(2)	O(1)-P(1)-C(10)-C(11)	-75.8(2)
C(7)-P(1)-C(10)-C(11)	178.2(2)	Ni-P(1)-C(10)-C(11)	39.7(2)
O(1)-P(1)-C(10)-C(12)	48.8(2)	C(7)-P(1)-C(10)-C(12)	-57.2(3)
Ni-P(1)-C(10)-C(12)	164.33(19)	C(1)-Ni-C(27)-C(28)	0.00(14)
P(1)#1-Ni-C(27)-C(28)	88.12(4)	P(1)-Ni-C(27)-C(28)	-88.12(4)
Ni-C(27)-C(28)-C(29)	180.000(2)	C(27)-C(28)-C(29)-C(34)	180.000(3)
C(27)-C(28)-C(29)-C(30)	0.000(4)	C(34)-C(29)-C(30)-C(31)	0.000(3)
C(28)-C(29)-C(30)-C(31)	180.000(3)	C(29)-C(30)-C(31)-C(32)	0.000(3)
C(30)-C(31)-C(32)-C(33)	0.000(3)	C(31)-C(32)-C(33)-C(34)	0.000(3)
C(32)-C(33)-C(34)-C(29)	0.000(3)	C(30)-C(29)-C(34)-C(33)	0.000(3)
C(28)-C(29)-C(34)-C(33)	180.000(3)		

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z

Figure S3 ORTEP drawing of $[2,6-({}^{i}Pr_{2}PO)_{2}C_{6}H_{3}]$ NiC=CPh (7a) at the 50 % probability level.

Table S10 Atomic coordinates $[x10^4]$ and equivalent isotropic displacement parameters $[\text{\AA}^2 x10^3]$ for **7a**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Ζ	U(eq)
Ni	2312(1)	4810(1)	2777(1)	36(1)
P(1)	1461(1)	5037(1)	1184(1)	36(1)
P(2)	2959(1)	4385(1)	4627(1)	38(1)
O(1)	821(2)	4320(2)	1499(3)	41(1)
O(2)	2444(2)	3762(2)	5580(3)	42(1)
C(1)	1636(2)	4062(3)	3549(5)	35(1)
C(2)	971(2)	3908(3)	2823(5)	38(1)
C(3)	459(3)	3374(3)	3376(5)	44(1)
C(4)	627(3)	2977(3)	4690(6)	46(1)
C(5)	1281(3)	3099(3)	5449(5)	42(1)
C(6)	1776(2)	3641(3)	4852(5)	38(1)
C(7)	997(3)	6124(3)	1237(6)	48(1)
C(8)	829(3)	6291(3)	2775(6)	56(2)
C(9)	1437(3)	6896(3)	692(7)	69(2)
C(10)	1608(3)	4828(3)	-673(5)	41(1)
C(11)	2061(3)	3982(3)	-773(5)	49(1)
C(12)	931(3)	4786(4)	-1679(6)	66(2)
C(13)	3311(3)	5242(3)	5896(5)	46(1)
C(14)	3713(3)	4868(4)	7248(6)	61(2)
C(15)	2702(3)	5862(4)	6220(6)	59(2)
C(16)	3676(2)	3595(3)	4380(5)	44(1)
C(17)	3409(3)	2872(3)	3329(6)	56(1)
C(18)	4320(3)	4094(4)	3901(6)	53(1)
$\dot{C(27)}$	2977(3)	5498(3)	1909(5)	39(1)
C(28)	3396(3)	5895(3)	1272(5)	40(1)
C(29)	3894(2)	6380(3)	488(5)	37(1)

C(30)	4593(3)	6091(3)	483(5)	44(1)
C(31)	5065(3)	6538(4)	-315(6)	51(1)
C(32)	4836(3)	7281(4)	-1099(6)	53(1)
C(33)	4154(3)	7592(3)	-1100(5)	51(1)
C(34)	3682(3)	7146(3)	-309(5)	45(1)
H(3)	7	3286	2865	53
H(4)	284	2610	5081	56
H(5)	1391	2823	6350	51
H(7)	540	6081	614	58
H(8A)	527	6826	2806	85
H(8B)	1271	6387	3384	85
H(8C)	581	5764	3115	85
H(9A)	1214	7476	881	103
H(9B)	1460	6827	-332	103
H(9C)	1917	6879	1181	103
H(10)	1891	5348	-986	49
H(11A)	2161	3892	-1761	73
H(11B)	1806	3456	-454	73
H(11C)	2508	4055	-170	73
H(12A)	1051	4680	-2649	99
H(12B)	675	5360	-1642	99
H(12C)	632	4292	-1393	99
H(13)	3652	5618	5409	55
H(14A)	3891	5370	7858	92
H(14B)	4112	4501	6998	92
H(14C)	3394	4494	7755	92
H(15A)	2888	6358	6832	89
H(15B)	2356	5516	6704	89
H(15C)	2471	6108	5330	89
H(16)	3822	3297	5313	52
H(17A)	3779	2418	3259	83
H(17B)	3286	3148	2394	83
H(17C)	2988	2584	3651	83
H(18A)	4689	3655	3725	79
H(18B)	4505	4516	4646	79
H(18C)	4179	4429	3026	79
H(30)	4750	5580	1034	53
H(31)	5539	6332	-316	62
H(32)	5155	7584	-1651	64
H(33)	4005	8112	-1641	61
H(34)	3211	7364	-309	54

Ni-C(27)	1.871(5)	Ni-C(1)	1.895(4)
Ni-P(1)	2.1226(14)	Ni-P(2)	2.1309(14)
P(1)-O(1)	1.662(3)	P(1)-C(10)	1.832(5)
P(1)-C(7)	1.837(5)	P(2)-O(2)	1.670(3)
P(2)-C(16)	1.825(5)	P(2)-C(13)	1.827(5)
O(1)-C(2)	1.397(5)	O(2)-C(6)	1.393(6)
C(1)-C(6)	1.383(6)	C(1)-C(2)	1.392(6)
C(2)-C(3)	1.394(6)	C(3)-C(4)	1.383(7)
C(4)-C(5)	1.382(7)	C(5)-C(6)	1.394(6)
C(7) - C(9)	1.533(7)	C(7)-C(8)	1.540(7)
C(10)-C(12)	1.521(7)	C(10)-C(11)	1.527(6)
C(13)-C(14)	1.526(7)	C(13)-C(15)	1.529(7)
C(16)-C(17)	1.513(7)	C(16)-C(18)	1.535(6)
C(27)-C(28)	1.198(6)	C(28)-C(29)	1.447(6)
C(29)-C(30)	1.391(6)	C(29)-C(34)	1.399(6)
C(30)-C(31)	1.394(7)	C(31)-C(32)	1.372(7)
C(32)-C(33)	1.373(7)	C(33)-C(34)	1.388(7)
C(27)-Ni-C(1)	176.2(2)	C(27)-Ni-P(1)	95.76(15)
C(1)-Ni-P(1)	82.52(15)	C(27)-Ni-P(2)	99.39(15)
C(1)-Ni-P(2)	82.37(15)	P(1)-Ni-P(2)	164.85(6)
O(1)-P(1)-C(10)	104.25(19)	O(1)-P(1)-C(7)	101.2(2)
C(10)-P(1)-C(7)	107.0(2)	O(1)-P(1)-Ni	106.84(13)
C(10)-P(1)-Ni	118.47(16)	C(7)-P(1)-Ni	116.89(19)
O(2)-P(2)-C(16)	101.40(19)	O(2)-P(2)-C(13)	102.9(2)
C(16)-P(2)-C(13)	107.6(2)	O(2)-P(2)-Ni	106.65(13)
C(16)-P(2)-Ni	117.37(17)	C(13)-P(2)-Ni	118.50(17)
C(2)-O(1)-P(1)	110.5(3)	C(6)-O(2)-P(2)	110.9(3)
C(6)-C(1)-C(2)	116.7(4)	C(6)-C(1)-Ni	122.0(4)
C(2)-C(1)-Ni	121.3(3)	C(1)-C(2)-C(3)	122.6(5)
C(1)-C(2)-O(1)	117.7(4)	C(3)-C(2)-O(1)	119.7(4)
C(4)-C(3)-C(2)	118.0(5)	C(5)-C(4)-C(3)	121.8(4)
C(4)-C(5)-C(6)	118.0(5)	C(1)-C(6)-O(2)	117.9(4)
C(1)-C(6)-C(5)	122.9(5)	O(2)-C(6)-C(5)	119.3(4)
C(9)-C(7)-C(8)	111.6(5)	C(9)-C(7)-P(1)	111.4(3)
C(8)-C(7)-P(1)	108.1(3)	C(12)-C(10)-C(11)	111.9(4)
C(12)-C(10)-P(1)	114.1(4)	C(11)-C(10)-P(1)	109.8(3)
C(14)-C(13)-C(15)	112.0(4)	C(14)-C(13)-P(2)	114.7(4)
C(15)-C(13)-P(2)	108.4(4)	C(17)-C(16)-C(18)	111.8(4)
C(17)-C(16)-P(2)	109.4(3)	C(18)-C(16)-P(2)	110.7(3)
C(28)-C(27)-Ni	175.3(4)	C(27)-C(28)-C(29)	179.2(5)
C(30)-C(29)-C(34)	118.0(4)	C(30)-C(29)-C(28)	121.3(4)
C(34)-C(29)-C(28)	120.7(4)	C(29)-C(30)-C(31)	121.2(5)
C(32)-C(31)-C(30)	119.2(5)	C(31)-C(32)-C(33)	121.1(5)
C(32)-C(33)-C(34)	119.8(5)	C(33)-C(34)-C(29)	120.7(5)

Table S11Bond lengths [Å] and angles [°] for 7a.

Table S12 Anisotropic displacement parameters $[Å^2x10^3]$ for **7a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka^{*}b^{*}U_{12}]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni	41(1)	31(1)	36(1)	2(1)	7(1)	-3(1)
P(1)	38(1)	33(1)	39(1)	1(1)	6(1)	1(1)
P(2)	43(1)	34(1)	37(1)	2(1)	5(1)	-4(1)
O(1)	39(2)	37(2)	46(2)	-1(2)	6(2)	-3(1)
O(2)	49(2)	39(2)	41(2)	8(2)	9(2)	-3(2)
C(1)	41(3)	26(2)	38(3)	2(2)	9(2)	3(2)
C(2)	42(3)	31(2)	41(3)	-2(2)	8(2)	2(2)
C(3)	39(3)	41(3)	55(3)	-9(2)	12(2)	-8(2)
C(4)	56(3)	32(2)	56(3)	-3(2)	27(3)	-8(2)
C(5)	54(3)	33(2)	42(3)	1(2)	12(2)	-5(2)
C(6)	45(3)	27(2)	46(3)	-3(2)	15(2)	2(2)
C(7)	48(3)	40(3)	59(3)	6(2)	12(3)	8(2)
C(8)	69(4)	40(3)	59(3)	-6(3)	0(3)	16(3)
C(9)	75(4)	38(3)	97(5)	22(3)	23(4)	12(3)
C(10)	47(3)	41(3)	36(3)	5(2)	6(2)	1(2)
C(11)	60(3)	40(3)	48(3)	-6(2)	17(3)	1(2)
C(12)	56(4)	92(4)	49(3)	-9(3)	2(3)	15(3)
C(13)	57(3)	41(3)	41(3)	1(2)	8(2)	-5(2)
C(14)	72(4)	64(4)	46(3)	-8(3)	-4(3)	-7(3)
C(15)	72(4)	48(3)	58(3)	-11(3)	10(3)	-3(3)
C(16)	43(3)	39(3)	49(3)	10(2)	8(2)	2(2)
C(17)	53(3)	43(3)	71(4)	-8(3)	11(3)	1(2)
C(18)	44(3)	55(3)	60(3)	-1(3)	9(3)	-3(2)
C(27)	46(3)	35(2)	37(3)	4(2)	5(2)	-3(2)
C(28)	45(3)	38(2)	36(3)	-2(2)	5(2)	-1(2)
C(29)	44(3)	31(2)	37(3)	-2(2)	3(2)	-7(2)
C(30)	53(3)	35(2)	45(3)	-4(2)	6(2)	-10(2)
C(31)	44(3)	52(3)	58(3)	-11(3)	10(3)	-6(2)
C(32)	59(4)	49(3)	54(3)	-3(3)	21(3)	-19(3)
C(33)	76(4)	37(3)	42(3)	7(2)	10(3)	-8(3)
C(34)	56(3)	36(2)	44(3)	4(2)	7(2)	5(2)

Table S13Torsion angles [°] for 7a.

C(27)-Ni-P(1)-O(1)	168.28(19)	C(1)-Ni- $P(1)$ -O(1)	-8.27(17)
P(2)-Ni-P(1)-O(1)	-12.8(3)	C(27)-Ni- $P(1)$ - $C(10)$	51.1(2)
C(1)-Ni-P(1)-C(10)	-125.4(2)	P(2)-Ni-P(1)-C(10)	-130.0(3)
C(27)-Ni-P(1)-C(7)	-79.3(2)	C(1)-Ni- $P(1)$ - $C(7)$	104.1(2)
P(2)-Ni-P(1)-C(7)	99.5(3)	C(27)-Ni- $P(2)$ - $O(2)$	178.99(19)
C(1)-Ni-P(2)-O(2)	-4.45(17)	P(1)-Ni-P(2)-O(2)	0.1(3)
C(27)-Ni-P(2)-C(16)	-68.2(2)	C(1)-Ni-P(2)-C(16)	108.3(2)
P(1)-Ni-P(2)-C(16)	112.9(3)	C(27)-Ni- $P(2)$ - $C(13)$	63.6(2)
C(1)-Ni-P(2)-C(13)	-119.8(2)	P(1)-Ni-P(2)-C(13)	-115.2(3)
C(10)-P(1)-O(1)-C(2)	136.9(3)	C(7)-P(1)-O(1)-C(2)	-112.1(3)
Ni-P(1)-O(1)-C(2)	10.7(3)	C(16)-P(2)-O(2)-C(6)	-118.5(3)
C(13)-P(2)-O(2)-C(6)	130.3(3)	Ni-P(2)-O(2)-C(6)	4.9(3)
C(27)-Ni-C(1)-C(6)	122(3)	P(1)-Ni-C(1)-C(6)	-174.9(4)
P(2)-Ni-C(1)-C(6)	3.9(3)	C(27)-Ni-C(1)-C(2)	-58(3)
P(1)-Ni-C(1)-C(2)	5.3(3)	P(2)-Ni-C(1)-C(2)	-175.9(4)
C(6)-C(1)-C(2)-C(3)	1.4(6)	Ni-C(1)-C(2)-C(3)	-178.8(3)
C(6)-C(1)-C(2)-O(1)	-179.4(4)	Ni-C(1)-C(2)-O(1)	0.4(6)
P(1)-O(1)-C(2)-C(1)	-7.8(5)	P(1)-O(1)-C(2)-C(3)	171.4(3)
C(1)-C(2)-C(3)-C(4)	-0.9(7)	O(1)-C(2)-C(3)-C(4)	180.0(4)
C(2)-C(3)-C(4)-C(5)	0.1(7)	C(3)-C(4)-C(5)-C(6)	0.0(7)
C(2)-C(1)-C(6)-O(2)	178.1(4)	Ni-C(1)-C(6)-O(2)	-1.7(5)
C(2)-C(1)-C(6)-C(5)	-1.3(6)	Ni-C(1)-C(6)-C(5)	178.9(3)
P(2)-O(2)-C(6)-C(1)	-2.5(5)	P(2)-O(2)-C(6)-C(5)	176.9(3)
C(4)-C(5)-C(6)-C(1)	0.6(7)	C(4)-C(5)-C(6)-O(2)	-178.8(4)
O(1)-P(1)-C(7)-C(9)	-169.1(4)	C(10)-P(1)-C(7)-C(9)	-60.2(5)
Ni-P(1)-C(7)-C(9)	75.4(4)	O(1)-P(1)-C(7)-C(8)	67.9(4)
C(10)-P(1)-C(7)-C(8)	176.8(3)	Ni-P(1)-C(7)-C(8)	-47.6(4)
O(1)-P(1)-C(10)-C(12)	47.3(4)	C(7)-P(1)-C(10)-C(12)	-59.4(4)
Ni-P(1)-C(10)-C(12)	165.8(3)	O(1)-P(1)-C(10)-C(11)	-79.3(4)
C(7)-P(1)-C(10)-C(11)	174.0(3)	Ni-P(1)-C(10)-C(11)	39.3(4)
O(2)-P(2)-C(13)-C(14)	57.6(4)	C(16)-P(2)-C(13)-C(14)	-49.0(5)
Ni-P(2)-C(13)-C(14)	174.9(3)	O(2)-P(2)-C(13)-C(15)	-68.4(4)
C(16)-P(2)-C(13)-C(15)	-175.0(3)	Ni-P(2)-C(13)-C(15)	48.9(4)
O(2)-P(2)-C(16)-C(17)	72.6(4)	C(13)-P(2)-C(16)-C(17)	-179.8(4)
Ni-P(2)-C(16)-C(17)	-43.1(4)	O(2)-P(2)-C(16)-C(18)	-163.8(3)
C(13)-P(2)-C(16)-C(18)	-56.2(4)	Ni-P(2)-C(16)-C(18)	80.5(4)
C(1)-Ni-C(27)-C(28)	1(8)	P(1)-Ni-C(27)-C(28)	-62(5)
P(2)-Ni-C(27)-C(28)	118(5)	Ni-C(27)-C(28)-C(29)	70(39)
C(27)-C(28)-C(29)-C(30)	-151(37)	C(27)-C(28)-C(29)-C(34)	28(37)
C(34)-C(29)-C(30)-C(31)	-1.4(7)	C(28)-C(29)-C(30)-C(31)	177.6(4)
C(29)-C(30)-C(31)-C(32)	0.6(7)	C(30)-C(31)-C(32)-C(33)	0.5(8)
C(31)-C(32)-C(33)-C(34)	-0.7(8)	C(32)-C(33)-C(34)-C(29)	-0.2(8)
C(30)-C(29)-C(34)-C(33)	1.2(7)	C(28)-C(29)-C(34)-C(33)	-177.8(4)

Figure S4 ORTEP drawing of $[2,6-(^{c}Pe_{2}PO)_{2}C_{6}H_{3}]$ NiC=CPh (7b) at the 50 % probability level.

Table S14 Atomic coordinates $[x10^4]$ and equivalent isotropic displacement parameters $[\text{\AA}^2 x10^3]$ for **7b**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Ζ	U(eq)
Ni	3166(1)	6834(1)	7500	29(1)
P(1)	3092(1)	7047(1)	6123(1)	32(1)
O(1)	2332(1)	7903(1)	5958(1)	38(1)
C(1)	2232(1)	7768(1)	7500	27(1)
C(2)	1923(2)	8194(2)	6736(1)	30(1)
C(3)	1239(2)	8879(2)	6716(2)	37(1)
C(4)	848(2)	9152(2)	7500	41(1)
C(7)	2600(2)	6097(2)	5488(2)	40(1)
C(8)	2341(3)	6339(3)	4543(2)	67(1)
C(9A)	1556(13)	5716(10)	4295(9)	92(5)
C(9B)	1271(13)	6071(10)	4523(10)	98(6)
C(10)	1152(3)	5340(3)	5133(3)	82(1)
C(11)	1712(2)	5693(2)	5896(2)	52(1)
C(12)	4097(2)	7479(2)	5515(2)	43(1)
C(13)	4904(2)	6761(2)	5472(2)	56(1)
C(14A)	5770(8)	7336(9)	5543(8)	79(4)
C(15A)	5472(8)	8000(7)	6277(7)	69(2)
C(14B)	5712(7)	7249(9)	6026(8)	72(3)
C(15B)	5527(7)	8294(7)	5865(7)	67(2)
C(16)	4506(3)	8363(2)	5940(3)	62(1)
C(27)	4092(2)	5908(2)	7500	35(1)
C(28)	4691(2)	5309(2)	7500	38(1)
C(29)	5405(2)	4595(2)	7500	43(1)
C(30)	5208(3)	3689(2)	7774(2)	54(1)

C(31)	5900(3)	3004(3)	7774(2)	68(1)
C(32)	6785(2)	3215(2)	7500	75(2)
H(3)	1045	9152	6182	45
H(4)	378	9622	7500	49
H(7)	3075	5585	5469	48
H(8A)	2149	7002	4498	80
H(8B)	2883	6235	4153	80
H(8C)	2707	5965	4120	80
H(8D)	2434	7012	4421	80
H(9B)	1804	5262	3885	110
H(9A)	1095	5961	3922	110
H(9C)	838	6587	4598	118
H(10A)	493	5544	5192	99
H(10B)	1163	4648	5124	99
H(10C)	1405	4742	4910	99
H(10D)	485	5255	5289	99
H(11A)	1864	5177	6302	62
H(11B)	1363	6181	6218	62
H(12)	3894	7633	4909	52
H(13A)	4862	6309	5959	68
H(13B)	4890	6414	4914	68
H(13C)	5089	6648	4880	68
H(13D)	4729	6181	5740	68
H(14A)	5906	7677	4996	95
H(14B)	6319	6954	5709	95
H(15A)	5923	8519	6349	83
H(15B)	5406	7664	6838	83
H(14C)	5659	7092	6652	86
H(14D)	6338	7063	5813	86
H(15C)	5843	8685	6308	81
H(15D)	5742	8485	5278	81
H(16A)	4108	8586	6426	74
H(16B)	4584	8872	5509	74
H(16C)	4324	8398	6541	74
H(16D)	4279	8910	5645	74
H(30)	4595	3536	7964	65
H(31)	5757	2388	7964	82
H(32)	7255	2745	7500	90

Ni-C(27)	1.874(3)	Ni-C(1)	1.889(3)
Ni-P(1)	2.1374(6)	P(1)-O(1)	1.6564(17)
P(1)-C(7)	1.815(3)	P(1)-C(12)	1.821(3)
O(1)-C(2)	1.393(3)	C(1)-C(2)	1.393(3)
C(2)-C(3)	1.386(3)	C(3)-C(4)	1.383(3)
C(7)-C(11)	1.530(4)	C(7)-C(8)	1.537(4)
C(8)-C(9A)	1.483(16)	C(8)-C(9B)	1.579(19)
C(9A)-C(10)	1.510(16)	C(9B)-C(10)	1.414(17)
C(10)-C(11)	1.506(5)	C(12)-C(16)	1.539(4)
C(12)-C(13)	1.546(4)	C(13)-C(14A)	1.492(12)
C(13)-C(14B)	1.595(10)	C(14A)-C(15A)	1.534(17)
C(15A)-C(16)	1.565(12)	C(14B)-C(15B)	1.538(16)
C(15B)-C(16)	1.469(11)	C(27)-C(28)	1.213(5)
C(28)-C(29)	1.444(4)	C(29)-C(30)	1.392(4)
C(30)-C(31)	1.393(4)	C(31)-C(32)	1.368(4)
C(27)-Ni-C(1)	180.0	C(27)-Ni-P(1)	97.79(2)
C(1)-Ni- $P(1)$	82.21(2)	P(1)-Ni-P(1)#1	164.42(4)
O(1)-P(1)-C(7)	102.51(12)	O(1)-P(1)-C(12)	100.87(12)
C(7)-P(1)-C(12)	106.57(12)	O(1)-P(1)-Ni	106.80(6)
C(7)-P(1)-Ni	116.33(9)	C(12)-P(1)-Ni	121.04(10)
C(2)-O(1)-P(1)	111.40(14)	C(2)#1- $C(1)$ - $C(2)$	115.6(3)
C(2)-C(1)-Ni	122.19(14)	C(3)-C(2)-C(1)	123.4(2)
C(3)-C(2)-O(1)	119.3(2)	C(1)-C(2)-O(1)	117.3(2)
C(4)-C(3)-C(2)	117.8(2)	C(3)#1-C(4)-C(3)	121.9(3)
C(11)-C(7)-C(8)	105.8(3)	C(11)-C(7)-P(1)	112.66(19)
C(8)-C(7)-P(1)	115.6(2)	C(9A)-C(8)-C(7)	106.8(7)
C(7)-C(8)-C(9B)	101.3(6)	C(8)-C(9A)-C(10)	106.6(9)
C(10)-C(9B)-C(8)	106.5(9)	C(9B)-C(10)-C(11)	101.7(6)
C(11)-C(10)-C(9A)	109.8(6)	C(10)-C(11)-C(7)	104.5(3)
C(16)-C(12)-C(13)	106.3(3)	C(16)-C(12)-P(1)	111.2(2)
C(13)-C(12)-P(1)	112.7(2)	C(14A)-C(13)-C(12)	104.6(6)
C(12)-C(13)-C(14B)	103.2(5)	C(13)-C(14A)-C(15A)	99.4(7)
C(14A)-C(15A)-C(16)	102.0(8)	C(15B)-C(14B)-C(13)	102.4(8)
C(16)-C(15B)-C(14B)	102.9(7)	C(15B)-C(16)-C(12)	106.8(5)
C(12)-C(16)-C(15A)	101.7(4)	C(28)-C(27)-Ni	180.0(3)
C(27)-C(28)-C(29)	180.0(3)	C(30)#1-C(29)-C(30)	117.9(4)
C(30)-C(29)-C(28)	121.03(19)	C(29)-C(30)-C(31)	120.8(4)
C(32)-C(31)-C(30)	120.2(4)		

Table S15 Bond lengths [Å] and angles [°] for 7b.

Symmetry transformations used to generate equivalent atoms: #1 -y+1,-x+1,-z+3/2

Table S16 Anisotropic displacement parameters $[Å^2x10^3]$ for **7b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka^{*}b^{*}U_{12}]$

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni	28(1)	28(1)	29(1)	0(1)	0(1)	8(1)
P(1)	35(1)	31(1)	29(1)	-2(1)	4(1)	2(1)
O(1)	46(1)	38(1)	29(1)	3(1)	-1(1)	7(1)
C(1)	24(1)	24(1)	34(2)	-2(1)	-2(1)	7(1)
C(2)	28(1)	28(1)	34(1)	0(1)	-3(1)	-2(1)
C(3)	32(1)	30(1)	50(2)	8(1)	-7(1)	3(1)
C(4)	28(1)	28(1)	67(2)	2(1)	2(1)	6(1)
C(7)	44(2)	36(2)	39(2)	-6(1)	5(1)	-4(1)
C(8)	102(3)	69(2)	31(2)	-8(2)	3(2)	-29(2)
C(9A)	123(12)	101(11)	52(5)	-2(6)	-11(6)	-61(10)
C(9B)	124(12)	69(8)	101(11)	19(7)	-80(10)	-25(7)
C(10)	71(3)	101(3)	74(3)	0(2)	-9(2)	-34(2)
C(11)	56(2)	53(2)	46(2)	-12(1)	12(2)	-16(2)
C(12)	46(2)	42(2)	42(2)	-2(1)	13(1)	-6(1)
C(13)	53(2)	48(2)	69(2)	-9(2)	28(2)	-3(2)
C(14A)	51(5)	62(6)	125(10)	10(7)	41(7)	-2(4)
C(15A)	70(5)	62(7)	76(7)	-9(5)	4(5)	-26(5)
C(14B)	37(4)	65(6)	113(9)	8(7)	4(6)	-18(4)
C(15B)	60(5)	64(6)	78(7)	-2(5)	3(5)	-23(4)
C(16)	62(2)	39(2)	85(2)	-8(2)	20(2)	-13(2)
C(27)	35(1)	35(1)	34(2)	-7(1)	-7(1)	6(1)
C(28)	38(1)	38(1)	38(2)	-10(1)	-10(1)	10(2)
C(29)	47(2)	47(2)	36(2)	-18(2)	-18(2)	21(2)
C(30)	70(2)	47(2)	47(2)	-10(1)	-16(2)	20(2)
C(31)	96(3)	53(2)	55(2)	-14(2)	-26(2)	34(2)
C(32)	87(3)	87(3)	50(2)	-31(2)	-31(2)	64(3)

Table S17Torsion angles [°] for 7b.

C(27)-Ni-P(1)-O(1)	-177.11(7)	C(1)-Ni-P(1)-O(1)	2.89(7)
P(1)#1-Ni- $P(1)$ - $O(1)$	2.89(7)	C(27)-Ni-P(1)-C(7)	69.20(11)
C(1)-Ni-P(1)- $C(7)$	-110.80(11)	P(1)#1-Ni-P(1)-C(7)	-110.80(11)
C(27)-Ni- $P(1)$ - $C(12)$	-62.80(12)	C(1)-Ni-P(1)- $C(12)$	117.20(12)
P(1)#1-Ni- $P(1)$ - $C(12)$	117.20(12)	C(7)-P(1)-O(1)-C(2)	119.10(17)
C(12)-P(1)-O(1)-C(2)	-131.02(17)	Ni-P(1)-O(1)-C(2)	-3.69(17)
C(27)-Ni-C(1)-C(2)#1	84.24(11)	P(1)-Ni-C(1)-C(2)#1	178.05(12)
P(1)#1-Ni-C(1)-C(2)#1	-1.95(12)	C(27)-Ni- $C(1)$ - $C(2)$	-95.76(11)
P(1)-Ni-C(1)-C(2)	-1.95(12)	P(1)#1-Ni-C(1)-C(2)	178.05(12)
C(2)#1- $C(1)$ - $C(2)$ - $C(3)$	-0.09(18)	Ni-C(1)-C(2)-C(3)	179.91(18)
C(2)#1-C(1)-C(2)-O(1)	-180.0(2)	Ni-C(1)-C(2)-O(1)	0.0(2)
P(1)-O(1)-C(2)-C(3)	-177.26(19)	P(1)-O(1)-C(2)-C(1)	2.6(2)
C(1)-C(2)-C(3)-C(4)	0.2(3)	O(1)-C(2)-C(3)-C(4)	-179.96(18)
C(2)-C(3)-C(4)-C(3)#1	-0.09(16)	O(1)-P(1)-C(7)-C(11)	-71.5(2)
C(12)-P(1)-C(7)-C(11)	-177.0(2)	Ni-P(1)-C(7)-C(11)	44.6(3)
O(1)-P(1)-C(7)-C(8)	50.3(3)	C(12)-P(1)-C(7)-C(8)	-55.2(3)
Ni-P(1)-C(7)-C(8)	166.4(2)	C(11)-C(7)-C(8)-C(9A)	-25.8(8)
P(1)-C(7)-C(8)-C(9A)	-151.2(7)	C(11)-C(7)-C(8)-C(9B)	2.2(6)
P(1)-C(7)-C(8)-C(9B)	-123.1(6)	C(7)-C(8)-C(9A)-C(10)	17.5(12)
C(9B)-C(8)-C(9A)-C(10)	-64.9(19)	C(9A)-C(8)-C(9B)-C(10)	75(2)
C(7)-C(8)-C(9B)-C(10)	-29.5(9)	C(8)-C(9B)-C(10)-C(11)	44.5(10)
C(8)-C(9B)-C(10)-C(9A)	-65(2)	C(8)-C(9A)-C(10)-C(9B)	75.6(19)
C(8)-C(9A)-C(10)-C(11)	-2.6(13)	C(9B)-C(10)-C(11)-C(7)	-42.3(9)
C(9A)-C(10)-C(11)-C(7)	-13.2(8)	C(8)-C(7)-C(11)-C(10)	23.5(4)
P(1)-C(7)-C(11)-C(10)	150.6(3)	O(1)-P(1)-C(12)-C(16)	66.7(3)
C(7)-P(1)-C(12)-C(16)	173.4(2)	Ni-P(1)-C(12)-C(16)	-50.6(3)
O(1)-P(1)-C(12)-C(13)	-174.0(2)	C(7)-P(1)-C(12)-C(13)	-67.3(2)
Ni-P(1)-C(12)-C(13)	68.6(2)	C(16)-C(12)-C(13)-C(14A)	-20.5(6)
P(1)-C(12)-C(13)-C(14A)	-142.5(5)	C(16)-C(12)-C(13)-C(14B)	8.5(5)
P(1)-C(12)-C(13)-C(14B)	-113.6(5)	C(12)-C(13)-C(14A)-C(15A)	43.6(9)
C(14B)-C(13)-C(14A)-C(15A)	-47.1(15)	C(13)-C(14A)-C(15A)-C(16)	-50.9(9)
C(14A)-C(13)-C(14B)-C(15B)	65.4(16)	C(12)-C(13)-C(14B)-C(15B)	-31.0(8)
C(13)-C(14B)-C(15B)-C(16)	42.9(10)	C(14B)-C(15B)-C(16)-C(12)	-38.5(9)
C(14B)-C(15B)-C(16)-C(15A)	45.3(11)	C(13)-C(12)-C(16)-C(15B)	18.4(6)
P(1)-C(12)-C(16)-C(15B)	141.4(5)	C(13)-C(12)-C(16)-C(15A)	-11.0(5)
P(1)-C(12)-C(16)-C(15A)	112.0(4)	C(14A)-C(15A)-C(16)-C(15B)	-65.8(13)
C(14A)-C(15A)-C(16)-C(12)	37.8(7)	P(1)-Ni-C(27)-C(28)	86.193(17)
P(1)#1-Ni-C(27)-C(28)	-93.807(17)	C(27)-C(28)-C(29)-C(30)#1	159.32(14)
C(27)-C(28)-C(29)-C(30)	-20.68(14)	C(30)#1-C(29)-C(30)-C(31)	0.1(2)
C(28)-C(29)-C(30)-C(31)	-179.9(2)	C(29)-C(30)-C(31)-C(32)	-0.1(4)
C(30)-C(31)-C(32)-C(31)#1	0.1(2)		

Symmetry transformations used to generate equivalent atoms: #1 -y+1,-x+1,-z+3/2