Electronic Supplementary Information (ESI)

Syntheses and structures of two gold(I) coordination compounds derived from P-S hybrid ligands and their efficient catalytic performance in the photodegradation of nitroaromatics in water

Hai-Xiao Qi,^a Jian-Feng Wang,^a Zhi-Gang Ren,^{*, a} Jin-Jiao Ning,^a and Jian-Ping Lang^{*, a,b}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

*E-mail: jplang@suda.edu.cn

Table of Contents

Fig. S1 Equipment used to collect the released CO ₂ in the degradation reactionsS4				
Fig. S2 PXRD patterns for 1: simulated from single crystal data; single-phase polycrystalline sample; samples after catalyzed the photodegradation of NB, PNP, DNP after the first cycle (NB-1, PNP-1, DNP-1) and the fifth cycle (NB-5, PNP-5 DNP-5)S4				
Fig. S3 PXRD patterns for 2 : simulated from single crystal data; single-phase polycrystalline sample; samples after catalyzed the photodegradation of NB, PNP, DNP after the first cycle (NB-1, PNP-1, DNP-1) and the fifth cycle (NB-5, PNP-5 DNP-5)S4				
Fig. S4The TGA curves for complexes 1 and 2				
Fig. S5Solid-state UV-vis absorption spectra of compounds 1 and 2S5				
Fig. S6 UV-Vis spectra of the aqueous solution of NB(a), PNP(b) and DNP(c) with 1 in dark. Black: only mixed, red: stirred for 3.5 to 4 hoursS5				
Fig. S7 UV-Vis spectra of the aqueous solutions of NB(a), PNP(b) and DNP(c) with 2 in dark. Black: just mixed, red: stirred for 4 to 6 hoursS6				
Fig. S8 UV-Vis spectra of the aqueous solution of NB(a), PNP(b) and DNP(c) without catalyst. Black: before irradiation, red: after irradiationS6				
Fig. S9 UV-Vis spectra of the solutions of NB(a), PNP(b), DNP(c) after irradiation at different time intervals in the presence of 2				
Fig. S10 PXRD patterns for $[Au_2(dppm)_2]Cl_2$: experimental (black); samples after catalyzed the photo-degradation of NB, PNP, DNP (NB: green; PNP: red; DNP: blue)				
Fig. S11 UV-Vis spectra of the solutions of NB(a), PNP(b), DNP(c) after UV irradiation for different time intervals in the presence of $[Au_2(dppm)_2]Cl_2$ S7				
Table S1 Degradation time in control experiments by using 1 and 2 with smaller surface areas				
Table S2 The concentrations of gold ion left in the residual solutions after the UV irradiation using ICP method. S8				
Table S3 Elemental analysis before and after catalysis for 1 and 2				
Fig. S12 The ¹ H NMR spectra of 1 and 2 in DMSO-d ₆ : a: before catalyzed the photodegradation of				
NB; b: after catalyzed the photodegradation of NBS9				

Fig. S15 The SEM images of **2** before (a, c) and after (b, d) irradiation in the catalytic photodegradation of NB.....S10

Fig. S16 UV-Vis spectra of the aqueous NB(a), PNP(b) and DNP(c) solutions which were re-adjusted to 5×10^{-4} M by adding the substrates into the centrifugalized solutions after the degradations catalyzed by **1**. Black: before irradiation, red: after irradiation.....S11

Fig. S17 UV-Vis spectra of the aqueous NB(a), PNP(b) and DNP(c) solutions which were re-adjusted to 5×10^{-4} M by adding the substrates into the centrifugalized solutions after the degradations catalyzed by **2**. Black: before irradiation, red: after irradiation......S11

Fig. S18 UV-Vis spectra of the filtrates after stirring the mixture of **1** and NB(a), PNP(b) or DNP(c) for 2 hours. Black: before irradiation, red: after irradiation.....S11

Fig. S19 UV-Vis spectra of the filtrates after stirring the mixture of **2** and NB(a), PNP(b) or DNP(c) for 2 hours. Black: before irradiation, red: after irradiation......S12

Fig. S20 UV-Vis spectra of the aqueous solution of NB(a), PNP(b) and DNP(c) in the presence of $HAuCl_4 \cdot 4H_2O$ under UV irradiation. Black: before irradiation, red: after irradiation......S12

Scheme S1. Proposed mechanism of the catalytic photodegradation reactions......S13

Fig. S1 Equipment used to collect the released CO₂ in the degradation reactions.

Fig. S2 PXRD patterns for **1**: simulated from single crystal data; single-phase polycrystalline sample; samples after catalyzed the photodegradation of NB, PNP, DNP after the first cycle (NB-1, PNP-1, DNP-1) and the fifth cycle (NB-5, PNP-5 DNP-5).

Fig. S3 PXRD patterns for **2**: simulated from single crystal data; single-phase polycrystalline sample; samples after catalyzed the photodegradation of NB, PNP, DNP after the first cycle (NB-1, PNP-1, DNP-1) and the fifth cycle (NB-5, PNP-5 DNP-5).

Fig. S4 The TGA curves for complexes 1 and 2.

Fig. S5 Solid-state UV-vis absorption spectra of compounds 1 and 2.

Fig. S6 UV-Vis spectra of the aqueous solution of NB(a), PNP(b) and DNP(c) with 1 in dark. Black: only mixed, red: stirred for 3.5 to 4 hours. Catalyst loading: 20 mg (1); Substrates: 5×10^{-4} M in 30 mL H₂O; in dark.

Fig. S7 UV-Vis spectra of the aqueous solutions of NB(a), PNP(b) and DNP(c) with 2 in dark. Black: just mixed, red: stirred for 4 to 6 hours. Catalyst loading: 12 mg (2); Substrates: 5×10^{-4} M in 30 mL H₂O; in dark.

Fig. S8 UV-Vis spectra of the aqueous solution of NB(a), PNP(b) and DNP(c) without catalyst. Black: before irradiation, red: after irradiation. Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Fig. S9 UV-Vis spectra of the solutions of NB(a), PNP(b), DNP(c) after irradiation at different time intervals in the presence of 2. Catalyst loading: 12 mg (2); Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Fig. S10 PXRD patterns for [Au₂(dppm)₂]Cl₂: experimental (black); samples after catalyzed the photo-degradation of NB, PNP, DNP (NB: green; PNP: red; DNP: blue)

Fig. S11 UV-Vis spectra of the solutions of NB(a), PNP(b), DNP(c) after UV irradiation for different time intervals in the presence of [Au₂(dppm)₂]Cl₂.

Table S1Degradation time in control experiments by using 1 and 2 with smaller surface areas.

catalyst	NB	PNP	DNP
1	9h	7.5h	10h
2	11h	8h	13h

Table S2 The concentrations of gold ion left in the residual solutions after the UV irradiationusing ICP method.

catalyst	substrate	Gold ion (mg/L)	Au mol%
1	NB	0.0293	0.016
	PNP	0.0266	0.015
	DNP	0.0261	0.014
2	NB	0.0270	0.015
	PNP	0.0284	0.015
	DNP	0.0255	0.014

 Table S3 Elemental analysis before and after catalysis for 1 and 2.

EA	С	Н	Ν
1: before	45.27	3.92	6.01
1: after	45.24	3.89	5.97
2: before	36.79	3.13	
2 : after	36.67	3.01	

Fig. S12 The ¹H NMR spectra of **1** and **2** in DMSO-d₆: a: before catalyzed the photodegradation of NB; b: after catalyzed the photodegradation of NB.

Fig. S13 The ³¹P NMR spectra of **1** and **2** in DMSO-d₆: a: before catalyzed the photodegradation of NB; b: after catalyzed the photodegradation of NB.

Fig. S14 Recycling experiments using **1** as a catalyst for the photodegradation of PNP (a) and DNP (b) and using **2** as a catalyst for the photodegradation of NB(c), PNP (d) and DNP (e) under UV light. The black squares and the lines are the experimental data and the fitted least-square line, respectively.

Fig. S15 The SEM images of **2** before (a, c) and after (b, d) irradiation in the catalytic photodegradation of NB.

Fig. S16 UV-Vis spectra of the aqueous NB(a), PNP(b) and DNP(c) solutions which were re-adjusted to 5×10^{-4} M by adding the substrates into the centrifugalized solutions after the degradations catalyzed by 1. Black: before irradiation, red: after irradiation. Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Fig. S17 UV-Vis spectra of the aqueous NB(a), PNP(b) and DNP(c) solutions which were re-adjusted to 5×10^{-4} M by adding the substrates into the centrifugalized solutions after the degradations catalyzed by 2. Black: before irradiation, red: after irradiation. Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Fig. S18 UV-Vis spectra of the filtrates after stirring the mixture of 1 and NB(a), PNP(b) or DNP(c) for 2 hours. Black: before irradiation, red: after irradiation. Catalyst loading: 20 mg (1); Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Fig. S19 UV-Vis spectra of the filtrates after stirring the mixture of 2 and NB(a), PNP(b) or DNP(c) for 2 hours. Black: before irradiation, red: after irradiation. Catalyst loading: 12 mg (2); Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Fig. S20 UV-Vis spectra of the aqueous solution of NB(a), PNP(b) and DNP(c) in the presence of HAuCl₄·4H₂O under UV irradiation. Black: before irradiation, red: after irradiation. Catalyst loading: 6 mg (HAuCl₄·4H₂O); Substrates: 5 × 10⁻⁴ M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Fig. S21 UV-Vis spectra of the aqueous solution of NB(a), PNP(b) and DNP(c) in the presence of dppatc under UV irradiation. Black: before irradiation, red: after irradiation. Catalyst loading: 7 mg (dppatc); Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².

Scheme S1 Proposed mechanism of the catalytic photodegradation reactions.

Fig. S22 UV-Vis spectra of the aqueous solution of NB with 1 (a) and 2 (b) in the presence of *t*-BuOH under experimental conditions. Black: before irradiation, red and blue: after irradiation. Catalyst loading: 20 mg (1) and 12mg (2); Substrates: 5×10^{-4} M in 30 mL H₂O; UV light-power density: 25 mW/cm².